下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高三数学必修五教案等差数列教案【一】教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学重难点掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学过程等比数列性质请同学们类比得出.【方法规律】1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a
2、,b,c均不为0)3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决.【示范举例】例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.教案【二】教学准备教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列
3、的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用教学过程由*红高粱主题曲“酒神曲”引入等差数列定义问题:多媒体演示,观察-发现?一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。例1:观察下面数列是否是等差数列:.二、等差数列通项公式:已知等差数列an的首项是a1,公差是d。则由定义可得:a2-a1=da3-a2=da4-a3=dan-an-1=d即可得:an=a1+(n-1)d例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。分析:知
4、道a1,d,求an。代入通项公式解:a1=3,d=2an=a1+(n-1)d=3+(n-1)×2=2n+1例3求等差数列10,8,6,4的第20项。分析:根据a1=10,d=-2,先求出通项公式an,再求出a20解:a1=10,d=8-10=-2,n=20由an=a1+(n-1)d得a20=a1+(n-1)d=10+(20-1)×(-2)=-28例4:在等差数列an中,已知a6=12,a18=36,求通项an。分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n-1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。解:由题意可得a1+5d=12a1+17d=36d=2a1=2an=2+(n-1)×2=2n练习1.判断下列数列是否为等差数列:23,25,26,27,28,29,30;0,0,0,0,0,0,52,50,48,46,44,42,40,35;-1,-8,-15,-22,-29;答案:不是是不是是等差数列an的前三项依次为a-6,-3a-5,-10a-1,则a等于()a.1b.-1c.-1/3d.5/11提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产改编视频素材讲解
- 2025年兴业银行济南分行社会招聘备考题库及参考答案详解1套
- 2025年波密县公安局公开招聘临聘人员备考题库及完整答案详解1套
- 修文县面向教育部直属师范大学2026届公费师范生毕业生招聘教师备考题库及答案详解参考
- 甘肃能源化工投资集团有限公司2026届校园招聘183人备考核心题库及答案解析
- 2025广东清远市清城区档案馆招聘后勤服务类人员1人笔试重点试题及答案解析
- 2025重庆市开州区事业单位面向应届高校毕业生考核招聘30人考试重点题库及答案解析
- 2025年驻马店正阳县国有资本投资控股集团有限公司招聘工作人员2名考试重点试题及答案解析
- 2025山西杏花村汾酒集团有限责任公司内部公开招聘笔试参考题库附带答案详解(3卷)
- 湛江市2023广东湛江市第八批见习岗位招聘812人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 河北省石家庄市裕华区石家庄市第四十中学2024-2025学年七年级上学期期中地理试题(含答案)
- 手术清点记录评分标准
- 中国戏曲剧种鉴赏智慧树知到期末考试答案章节答案2024年上海戏剧学院等跨校共建
- pet薄膜生产工艺
- 二年级【语文(统编版)】语文园地一(第一课时)课件
- 肝脏的营养与保健知识讲座
- 2024届辽宁省抚顺市名校数学九年级第一学期期末达标检测模拟试题含解析
- 2023年广东省佛山市顺德区小升初数学试卷(含答案)
- 富士相机使用说明书
- 区域经济空间结构理论之增长极理论
- 北京工商大学大一高等数学上册期末考试卷及答案
评论
0/150
提交评论