




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第六节第六节方向导数、梯度和泰勒公式方向导数、梯度和泰勒公式实例实例:一块长方形的金属板,四个顶点的坐:一块长方形的金属板,四个顶点的坐标是标是(1,1),(5,1),(1,3),(5,3)在坐标原点在坐标原点处有一个火焰,它使金属板受热假定板上处有一个火焰,它使金属板受热假定板上任意一点处的温度与该点到原点的距离成反任意一点处的温度与该点到原点的距离成反比在比在(3,2)处有一个蚂蚁,问这只蚂蚁应沿处有一个蚂蚁,问这只蚂蚁应沿什么方向爬行才能最快到达较凉快的地点?什么方向爬行才能最快到达较凉快的地点?问题的问题的实质实质:应沿由热变冷变化最骤烈的方:应沿由热变冷变化最骤烈的方向(即梯度方向)
2、爬行向(即梯度方向)爬行一、问题的提出一、问题的提出 讨论函数讨论函数 在一点在一点P沿某一方向沿某一方向的变化率问题的变化率问题),(yxfz 二、方向导数的定义二、方向导数的定义oyxlP xyP引射线引射线内有定义,自点内有定义,自点的某一邻域的某一邻域在点在点设函数设函数lPPUyxPyxfz)(),(),( ).(),(,pUPlyyxxPlx 上的另一点且上的另一点且为为并设并设为为的转角的转角轴正向到射线轴正向到射线设设 (如图)(如图) |PP,)()(22yx ),(),(yxfyyxxfz 且且当当 沿着沿着 趋于趋于 时,时,P Pl ),(),(lim0yxfyyxxf
3、 , z 考虑考虑是否存在?是否存在?.),(),(lim0 yxfyyxxflf 依依定定义义,函函数数),(yxf在在点点P沿沿着着x轴轴正正向向0 , 11 e、y轴轴正正向向1 , 02 e的的方方向向导导数数分分别别为为yxff ,;沿着沿着x轴负向、轴负向、y轴负向的方向导数是轴负向的方向导数是 yxff ,.的的方方向向导导数数沿沿方方向向则则称称这这极极限限为为函函数数在在点点在在,时时,如如果果此此比比的的极极限限存存趋趋于于沿沿着着当当之之比比值值,两两点点间间的的距距离离与与函函数数的的增增量量定定义义lPPlPyxPPyxfyyxxf 22)()(),(),( 记为记为
4、定定理理如如果果函函数数),(yxfz 在在点点),(yxP是是可可微微分分的的,那那末末函函数数在在该该点点沿沿任任意意方方向向 L L 的的方方向向导导数数都都存存在在,且且有有 sincosyfxflf , 其其中中 为为x轴轴到到方方向向 L L 的的转转角角证明证明由于函数可微,则增量可表示为由于函数可微,则增量可表示为)(),(),( oyyfxxfyxfyyxxf 两边同除以两边同除以,得到得到cossin )(),(),(oyyfxxfyxfyyxxf 故有方向导数故有方向导数 ),(),(lim0yxfyyxxf .sincos yfxf lf例例 1 1 求求函函数数yxe
5、z2 在在点点)0 , 1(P处处沿沿从从点点 )0 , 1(P到到点点)1, 2( Q的的方方向向的的方方向向导导数数.解解故故x轴轴到到方方向向l的的转转角角4 .; 1)0, 1(2)0, 1( yexz, 22)0, 1(2)0, 1( yxeyz所所求求方方向向导导数数)4sin(2)4cos( lz.22 这这里里方方向向l即即为为1, 1 PQ,例例 2 2 求求函函数数22),(yxyxyxf 在在点点(1,1)沿沿与与x轴轴方方向向夹夹角角为为 的的方方向向射射线线l的的方方向向导导数数.并并问问在在怎怎样样的的方方向向上上此此方方向向导导 数数有有 (1)最最大大值值; (
6、2)最最小小值值; (3)等等于于零零?解解 sin)1 , 1(cos)1 , 1()1 , 1(yxfflf 由方向导数的计算公式知由方向导数的计算公式知,sin)2(cos)2()1 , 1()1 , 1( xyyx sincos),4sin(2 故故(1)当当4 时时,方方向向导导数数达达到到最最大大值值2;(2)当当45 时时,方方向向导导数数达达到到最最小小值值2 ;(3)当当43 和和47 时时,方向导数等于方向导数等于 0.对于三元函数对于三元函数),(zyxfu ,它在空间一点,它在空间一点),(zyxP沿着方向沿着方向 L的方向导数的方向导数 ,可定义,可定义为为,),()
7、,(lim0 zyxfzzyyxxflf 推广可得三元函数方向导数的定义推广可得三元函数方向导数的定义( 其中其中222)()()(zyx ) 同同理理:当当函函数数在在此此点点可可微微时时,那那末末函函数数在在该该点点沿沿任任意意方方向向 L 的的方方向向导导数数都都存存在在,且且有有.coscoscos zfyfxflf 设设方方向向 L 的的方方向向角角为为 ,cos x,cos y,cos z例例 3 3 设设n是是曲曲面面632222 zyx 在在点点)1 , 1 , 1(P处处的的指指向向外外侧侧的的法法向向量量,求求函函数数2122)86(1yxzu 在在此此处处沿沿方方向向n的
8、的方方向向导导数数.解解令令, 632),(222 zyxzyxF, 44 PPxxF, 66 PPyyF, 22 PPzzF故故 zyxFFFn , ,2, 6, 4 ,142264222 n方向余弦为方向余弦为,142cos ,143cos .141cos PPyxzxxu22866 ;146 PPyxzyyu22868 ;148 PPzyxzu22286 .14 PPzuyuxunu)coscoscos( .711 故故定定义义 设设函函数数),(yxfz 在在平平面面区区域域 D 内内具具有有一一阶阶连连续续偏偏导导数数,则则对对于于每每一一点点DyxP ),(,都都可可定定出出一一个
9、个向向量量jyfixf ,这这向向量量称称为为函函数数),(yxfz 在在点点),(yxP的的梯梯度度,记记为为 ),(yxgradfjyfixf .三、梯度的概念三、梯度的概念?:最快最快沿哪一方向增加的速度沿哪一方向增加的速度函数在点函数在点问题问题P sincosyfxflf sin,cos, yfxfeyxgradf ),(,cos| ),(| yxgradf 其其中中),(,eyxgradf 当当1),(cos( eyxgradf时时,lf 有最大值有最大值.设设jie sincos 是是方方向向 l上上的的单单位位向向量量,由由方方向向导导数数公公式式知知 函数在某点的梯度是这样一
10、个向量,它的函数在某点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致方向与取得最大方向导数的方向一致,而它的模为而它的模为方向导数的最大值梯度的模为方向导数的最大值梯度的模为 22| ),(| yfxfyxgradf.结论结论当当xf 不不为为零零时时,x轴轴到到梯梯度度的的转转角角的的正正切切为为xfyf tangradfgradf P),(yxfz 在几何上在几何上 表示一个曲面表示一个曲面曲面被平面曲面被平面 所截得所截得cz ,),( czyxfz所得曲线在所得曲线在xoy面上投影如图面上投影如图oyx2),(cyxf1),(cyxfcyxf),(等高线等高线),(yxgr
11、adf梯度为等高线上的法向量梯度为等高线上的法向量P等高线的画法等高线的画法播放播放图图形形及及其其等等高高线线图图形形函函数数xyzsin 例如例如,梯度与等高线的关系:梯度与等高线的关系:向导数向导数的方的方于函数在这个法线方向于函数在这个法线方向模等模等高的等高线,而梯度的高的等高线,而梯度的值较值较值较低的等高线指向数值较低的等高线指向数从数从数线的一个方向相同,且线的一个方向相同,且在这点的法在这点的法高线高线的等的等的梯度的方向与点的梯度的方向与点在点在点函数函数cyxfPyxPyxfz ),(),(),( 三元函数三元函数),(zyxfu 在空间区域在空间区域 G 内具有内具有一
12、阶连续偏导数,则对于每一点一阶连续偏导数,则对于每一点GzyxP ),(,都可定义一个向量都可定义一个向量(梯度梯度).),(kzfjyfixfzyxgradf 类似于二元函数,此梯度也是一个向量,类似于二元函数,此梯度也是一个向量,其方向与取得最大方向导数的方向一致,其模其方向与取得最大方向导数的方向一致,其模为方向导数的最大值为方向导数的最大值.梯度的概念可以推广到三元函数梯度的概念可以推广到三元函数类似地类似地,设曲面设曲面czyxf ),(为函数为函数),(zyxfu 的等量面,此函数在点的等量面,此函数在点),(zyxP的梯度的方向与的梯度的方向与过点过点 P的等量面的等量面czyx
13、f ),(在这点的法线的一在这点的法线的一个方向相同,且从数值较低的等量面指向数值较个方向相同,且从数值较低的等量面指向数值较高的等量面,而梯度的模等于函数在这个法线方高的等量面,而梯度的模等于函数在这个法线方向的方向导数向的方向导数.例例 4 4 求求函函数数 yxzyxu2332222 在在点点 )2 , 1 , 1 (处处的的梯梯度度,并并问问在在 哪哪些些点点处处梯梯度度为为零零?解解 由梯度计算公式得由梯度计算公式得kzujyuixuzyxgradu ),(,6)24()32(kzjyix 故故.1225)2 , 1 , 1(kjigradu 在在)0 ,21,23(0 P处梯度为处
14、梯度为 0.1、方向导数的概念、方向导数的概念2、梯度的概念、梯度的概念3、方向导数与梯度的关系、方向导数与梯度的关系(注意方向导数与一般所说偏导数的(注意方向导数与一般所说偏导数的区别区别)(注意梯度是一个(注意梯度是一个向量向量)四、小结四、小结.),(最最快快的的方方向向在在这这点点增增长长梯梯度度的的方方向向就就是是函函数数yxf讨论函数讨论函数22),(yxyxfz 在在)0 , 0(点处的偏导数是否存在?方向导数是否存在?点处的偏导数是否存在?方向导数是否存在?思考题思考题xfxfxzx )0 , 0()0 ,(lim0)0,0(.|lim0 xxx 同同理理:)0,0(yz yy
15、y |lim0故两个偏导数均不存在故两个偏导数均不存在.思考题解答思考题解答沿沿任任意意方方向向,zyxl 的的方方向向导导数数, )0 , 0(),(lim0)0,0(fyxflz 1)()()()(lim22220 yxyx 故故沿沿任任意意方方向向的的方方向向导导数数均均存存在在且且相相等等.一、一、 填空题填空题: :1 1、 函数函数22yxz 在点在点)2 , 1(处沿从点处沿从点)2 , 1(到点到点 )32 , 2( 的方向的方向导数为的方向的方向导数为_._.2 2、 设设xyzyxzyxf 22232),(zyx623 , , 则则 )0 , 0 , 0(gradf_._.
16、3 3、 已知场已知场,),(222222czbyaxzyxu 沿沿则则u场的梯度场的梯度方向的方向导数是方向的方向导数是_._.4 4、 称向量场称向量场a为有势场为有势场, ,是指向量是指向量a与某个函数与某个函数 ),(zyxu的梯度有关系的梯度有关系_._.练练 习习 题题三三、 设设vu,都都是是zyx,的的函函数数, ,vu,的的各各偏偏导导数数都都存存在在且且连连续续, ,证证明明: :ugradvvgraduuvgrad )(四四、 求求222222czbyaxu 在在点点),(000zyxM处处沿沿点点的的向向径径0r的的方方向向导导数数, ,问问cba,具具有有什什么么关关系系时时此此方方向向导导数数等等于于梯梯度度的的模模? ?二二、求求函函数数)(12222byaxz 在在点点)2,2(ba处处沿沿曲曲线线 12222 byax在在这这点点的的内内法法线线方方向向的的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论