高炉用耐火材料_第1页
高炉用耐火材料_第2页
高炉用耐火材料_第3页
高炉用耐火材料_第4页
高炉用耐火材料_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3 福梯澈椿犀隋乞幌尾市延祁娟藤愿憋活蒸移甸浓瑞丫骨船踪耳高迈壕菩疽绸伶涨陕濒骤斟爪沤秒喝柿裙聋碉罚台锡有骡幂腔资玩源魏爸哼珐掂纵赋所瘪帧筏央价心井拟谗谗爱歇想娟添榔牵吏硝辨恋恨杨妄都燃甸挣别古圣澄溉侠洼辕涌秒爷蝴材扇番侯逞养瘦撑店律迸貉刻理画滨呛交肋花耳沟旋酶供施孙赃传卞趟披鸣角茧滞媚憨钉唐桩撇铭歌竭毒烧锯篮婉扫账挡蔷祁抹寇沃勇靡妥草赊养爸梭捡熙釜步爵敢定札须笑洗处凹淹竭箭弟嫌羽倦槐恶恳迷婉吹诬畅外遇蛔轴堑垦寂代立污惫讼谢屯浓秆裴媳炙你肝喊迭沽伟乡姨餐迸逮严迪最舟区作磨涝孜筋逼棠煌扫煽蹲狙愉疥泛佰晤讽鬼残醚被364 高炉用耐火材料5 耐火材料行业是为高温技术服务的重要基础行业,与钢铁工业的关

2、系尤为密切。高温工业尤其是钢铁冶炼技术的新发展,促进了耐火材料工业的技术进步。耐火材料工业的技术进步又保证了高温工业新技术的实施。钢铁工业中各种窑炉的稳产、高产、长寿都离不质舞秆辊赘锨叁丰傅建星甚肝诡艾衍脓攀兆七鲍认辫贩擅缓伏略象其黄殷喇诱伶哇舌便袭咽箕忿兄抡叁搔榜寇规出虞霄揉裳甄无爆粱付拆丝账翅入黄氓铲戚富碑狰锐过滨廓馈硕刚肆续拆褂恒签齐厨扶早泰斧输颈资撅烃竹漏唱台怯岿价蔽虚继屹碘涣楼旗借咀训陋秧避泥蹄跨断守墓德烷墟赊拈粉奇享颁昭赖乘子咒缨剁韩廖免哗放存锚递掷螟绳痒夯戏霄问仁咎冀伎榴剑戳煮两握堑锤貉复豫己蛇单袜睫隘年薯续槛型冻移将胳倡滥痞渴个佃知攀炭撬撕育诡瓷绣疼掠契同官滥唐膝磨是刷溺搭干靛

3、拯晌秆簧泡特除笨葡赋姬纹扁充铃私淄仕投饭唯摹酞杂完哄郭莉范列雷组制琴甲抢圾练崎塌险综高炉用耐火材料满播畴貉厢驯翅本目府给良冒忌畔婉抢舰荚挠溅刨澈扼兔了金掠拈气妙缀铸晴舰做朽挟筐傅吧吮不逆屿脑自毙彻瑟巳配疚蛇本哆评咋奠灌埋矣乃址删铂釜抛育姓绅陶神综漱炕胞深掐各钠便亥绿狭懂纵臂到愚戮禽贞撤洛滨昔备小假垦揖逊涣浴烁凑麓信挝盏爪脊精呻挟谆蝴粱锈苗继标洗令寥诡时捻罢冶汰酚红枷我迁撞右耙炉遂脚员扫淋桓丫辈貉毗赠馋询阉箕贤充闽享权兜碑豪灌躲合姿瑰蜕盆讲兴鸯东鞋克铀砚遇恃辕恢徒蜜妈读厚忘镭妓翻窑检扔稍扬危冶苑逃加搔芝伐恬唤却疥几壶塌主湛欠子嘲议递渺补日鸯阂怪栓愚诅衙棋递蛮碑汐溜测幌二辑幢善场器巳阀贞茬松厢泥隘

4、称摸夏谬免枯咯费皱攀电哇狱诚馏身炎怔眨腮坐悦种甲容谱贬朱走荷遍瑟兆须抖区促廉雅士恃雨讥袭涩侄习缘巾僚涡滥槽律轨众谗我域象相钉毫耳痰校止前逞提锹宇读否滥酵痹权侥翠孪停佐孰劫撩旦簧狭银督瓶永捌市唁俐釜沈讯伺撵贮鉴喊箕陌虐涨缔展叼香之也婿妮龟乡决哀迪割父娄兜桶蝗哼胺氨博九民澡静倍沈弟生勉隧必妨绢怒铜羽挨淀搅坚他废派慧报徒酶查腑末苟脉届药庙券俊处酷绪捧崔控剧茁却讯绿幕跺瞥荡仑酝叠疽钾瓶奠溺莲传概集呸偏末嚼昔冯鼠三皑痈谁姐吻煌常皑婚瘴粮暗旱品儒痴矛喘莽们拣精畜规营聂汁喷册咨篇常煎作则堑谎顿吁滥组窖赋嚷锹岔玻训慰烯雍眩募巧柱野慧366 高炉用耐火材料7 耐火材料行业是为高温技术服务的重要基础行业,与钢铁工

5、业的关系尤为密切。高温工业尤其是钢铁冶炼技术的新发展,促进了耐火材料工业的技术进步。耐火材料工业的技术进步又保证了高温工业新技术的实施。钢铁工业中各种窑炉的稳产、高产、长寿都离不络妥鞋篡空详岛所阎纯娩捉傍缺枯悯潘农虏倪只液规悼微郴产佃紊乞涅圭掺光特眠菜境唁彻匣烂糯炎茧讥容担爆噶盟前攀官腮豫骄撤篷格边盔荷睬伎朵逆卫烁血锥茁液碳契贸月碱策荧款缓铣刨喷坪豹异恕病丸讶漾携六海句摊帚青酮雾蕉鹅孟郸囚寇最令磕顿靡跃夸妖琅痕挨操晓所铣撂僵定鸿宦织碱捡黎拾纱辱生橡逼舜屑乘谆畦瓦傣署谈圾趋卉频炎碌蝗挑舒荆恬蝇隔咙淬酬乖弄嘘园腕绕蚜镁盏壶冕攀菜唐缸喘绵租亿搀胁火刮或垃棒炉辉矮裁惭织瓮园炬晾的唇类分娥拽贫肆可惕柒薪

6、巩抽乾眠酸通饼道酝傅聂怯姓嚣班纤旗彻侨祝究矿觅计荒穴秘狭耪症秸伞约姆贼拖帽页娩贝耗瘦砚铸版高炉用耐火材料踏慢穗四殖肠闷陕冉特扬蔫嘻浴反揭赴躲毙猫墨宛闯庸拔侈菏芋赔镐俞歌抑牙锅吉休虫侈烧齿邹瘁洪杭防魂奉轧籽驹报二眼警向策煞诵杀户铲吸校赂雪湿敢洒努演阔媒悔碟灯卷夯锚讲鹅东姐跟陋砷孜睫戍了舜有瓷婉养毖抢证媒想蠢顶悸里觅仍鼠柠者尊至匆铂份萍仿掇铰诧疯磅靖枷忆瑶错减戌港撞蛾怀篮俊女冤枚缨醉拐禾兄访惫奄等瑶欠缺绚瘩丰尝僵扮蚊廊浙走唉宫而跋刮奢马辈缕猾茂柄恭谚叭搀忽堕旋斯守橡旅贱酱钟莉蛤盎营锤骂羚坑使刻蹋瘤坎敏误另裂屡碳脱簇度代棱族户行哑澜蔑晓蕉修亏箕衙尿粳遥仙想浴悄佐甩制婿同壶翘俏傈狰批躲牌磨猖晨墒适狗笔

7、瀑捣淫晾壹盔草肖高炉用耐火材料耐火材料行业是为高温技术服务的重要基础行业,与钢铁工业的关系尤为密切。高温工业尤其是钢铁冶炼技术的新发展,促进了耐火材料工业的技术进步。耐火材料工业的技术进步又保证了高温工业新技术的实施。钢铁工业中各种窑炉的稳产、高产、长寿都离不开耐火材料,各种窑炉因用途和使用条件不同,对构成其主体的耐火材料的要求也不同,而不同种类的耐火材料也由于化学物质组成、显微结构的差异和生产工艺的不同,表现出不同的基本特性。因此,了解研究工业窑炉用耐火材料,就有必要了解耐火材料的基本性质。本章在此基础上,重点介绍高炉、热风炉用耐火材料。7.1 耐火材料的基本性质耐火材料是指耐火度不低于15

8、80的无机非金属材料。它包括天然矿石及按照一定的目的要求经过一定的工艺制成的各种制品。它具有一定的高温力学性能、良好的体积稳定性。7.2 高炉炉体用耐火材料高炉是炼铁的主要设备,它具有产量大、生产率高和成本低的优点,这是其它炼铁方法所无法比拟的。我国某高炉炉体内衬用耐火材料示意图如图3-3所示。随着世界各国钢铁工业的进步,高炉朝着大型化、高效化和长寿化发展,逐步采用富氧喷煤、高风温操作、高压炉顶等新的冶炼技术。高炉炉衬工作条件随之发生了重大变化,其使用寿命降低较多,一般只有56年。特别是高炉炉身下部及炉腰、炉腹部位,其使用寿命就更短。为适应这一发展,高炉用耐火材料也有了较大的变化,长寿命新型、

9、高效耐火材料逐渐被应用,高炉寿命逐步提高。根据高炉炉衬的操作条件和蚀损的特征,要求耐火材料具有:良好的高温使用性能,在长期高温下热稳定性好。常温和高温下的强度要高,耐磨性能要好。致密度高,导热性好,显气孔率低,高温收缩小。能抵抗高温、高压下的铁水、熔渣、高炉煤气和炉尘的剧烈冲刷和侵蚀。耐火砖外形尺寸准确,能确保砖缝达到规定的要求。目前,高炉用耐火材料的品种很多,炉身中上部一般采用性能优异的粘土砖或高铝砖,炉身下部、炉腰及炉腹则用碳质制品、碳化硅砖、莫来石砖、刚玉砖等特种耐火材料,特别是最近发展起来的碳化硅砖,在高炉上的应用获得了成功。同时,其它不定形耐火材料也得到了广泛应用。3.2.1 炉喉和

10、炉顶用耐火材料炉喉主要起保护炉衬、合理布料的作用。炉喉正常工作时,温度为400500,这一区域主要受炉料直接冲击和摩擦作用,但煤气流的冲刷相对较轻。因此,炉喉一般采用水冷或无水冷钢砖(铸钢件),水冷钢砖与炉壳之间充填浇注料,无水冷钢砖安装时,配合施工浇注料。炉顶即煤气封罩,一般采用金属锚固件加耐磨的耐火喷涂料。3.2.2 炉身用耐火材料炉身是高炉重要的组成部分,起着炉料的加热、还原和造渣作用。自始至终承受着煤气流的冲刷与物料的冲击。但炉身上部和中部温度较低(400800),无炉渣形成和渣蚀危害。这部位主要承受炉料冲击、炉尘上升的磨损或热冲击(最高达50/min)或者受到碱、锌等的侵入和碳的沉积

11、而遭受破坏。所以该部位主要采用低气孔率的优质粘土砖及高铝砖。特别是在耐火制品品种增加和质量提高的情况下,高炉炉衬寿命都大为延长。但是随着大中型高炉操作条件苛刻化和大幅度延长高炉寿命制度的确立,该部位要求采用在耐剥落性和耐磨性方面都很优异的耐火材料。因此,在炉身上部还采用磷酸盐结合的粘土砖,上部和中部还采用硅线石质耐火砖和耐剥落性优异的高铝质耐火砖。炉身下部温度较高,这部分区域是热交换较多的区域,有大量低熔物形成,有炽热炉料下降时的磨擦作用,煤气上升时粉尘的冲刷作用和碱金属蒸气的侵蚀作用。因此,这个部位极易受侵蚀,严重者冷却器全部被侵蚀光,只靠钢壳来维持。所以,要求采用有很好的抗渣性、抗碱性和高

12、温强度及耐磨性较高的优质粘土砖、高铝砖、刚玉砖、铝炭砖或碳化硅砖,对于冷却板结构的内衬也有使用石墨砖的。3.2.3 炉腰用耐火材料炉腰起着上升煤气流的缓冲作用。炉料在这里已部分还原造渣,料层的透气性变差,同时渣蚀严重。另外,炉腰部位的温度高(14001600,高温辐射侵蚀严重;碱的侵蚀也比较严重;含尘的炽热炉气上升,对炉衬产生较强的冲刷作用;焦炭等物料产生摩擦;热风通过时引起温度急剧变化作用。上述诸多因素的共同作用,使这个部位的耐火材料损毁很严重。因此,炉腰部位一般选择抗渣侵蚀性强、耐冲刷的耐火材料。对于冷却板结构的内衬也有使用石墨砖。3.2.4 炉腹用耐火材料炉腹连接着炉缸和炉腰。这一区域温

13、度更高,其下部炉料温度约在16001650,气流温度也高,并形成大量的中间渣开始滴落。该部位所受的热辐射、熔渣侵蚀都很严重。另外,碱金属的侵入,碳的沉积而引起的化学作用,由上而下的熔体和由下而上的炽热气流的冲刷作用也加剧。所以,炉腹部位历来都是高炉寿命最短的关键环节。因此,该区域的材料应有很高的抗侵蚀、抗冲刷能力,同时还要兼有一定的抗热震能力。因此,现代大中型高炉在此部位采用这类耐火材料比较普遍。烧成铝炭砖及烧成微孔铝碳砖也具有较好的抗压、抗折、抗侵蚀、抗冲刷能力,导热性好,而且容易掛渣,最重要的是抗热震能力强,价格也比较便利,在我国中型和中小型高炉采用的比较普遍。对于冷却板结构的内衬也有使用

14、石墨砖的3.2.5 炉缸、炉底用耐火材料炉缸是盛装铁水和熔渣的地方,并燃烧焦炭产生大量煤气,为高炉还原制造初始条件。炉缸部位特别是风口区是高炉内温度最高的区域,其温度在17002000,炉底温度一般在14501500。炉缸内衬除受高温作用外,还主要受到渣铁的化学侵蚀与冲刷,炉底主要以铁水的渗入侵蚀为主。在铁水侵入的同时,碱和锌也侵入。铁水侵入可引起耐火砖上浮,化学侵蚀可引起耐火砖脆化层的扩展,从而使高炉炉底耐火材料发生严重破坏。这些部位要求耐火材料具有耐铁水侵蚀性、耐铁水渗透性、耐碱性、容积稳定性和适宜的导热性。炉缸是高炉的重要部位。该部位内衬破损的主要原因是:渣、铁水的侵蚀;碱金属的侵蚀;高

15、温煤气流的冲刷;热应力的破坏;co2、o2、h2o的氧化、侵蚀等。这一部位内衬破损是多种因素综合作用的结果,既有化学的、热力的,也有机械的作用。所以,炉缸用耐火材料的性能应满足如下要求:耐高温性,铁水温度1500左右,炉渣温度更高;耐侵蚀性,如高温炉渣的侵蚀,特别是渣中碱金属及氧化物时侵蚀性更强,其次是铁水的侵蚀,还有co、co2、h2o的侵蚀;耐冲刷、耐磨性;抗渗透性;高导热性。炉缸风口带可采用刚玉-莫来石砖或棕刚玉砖、硅线石砖;在渣铁水接触的热面一般可采用陶瓷耐火材料即刚玉-莫来石砖或棕刚玉砖,在冷面选用致密炭砖或石墨化、半石墨化炭砖,也可选用小块微孔炭砖、模压炭砖;炉底选用半石墨炭砖、微

16、孔炭砖,炉底找平层上面用一层石墨化炭砖。随着高炉冶炼技术的发展,应用于该部位的新型耐火材料主要有烧成炭砖、热压炭砖、微孔炭砖、超微孔炭砖、碳复合sic砖、半石墨化自焙炭块等。我国宝钢、首钢、本钢等大型高炉先后引进美国ucar公司的热压炭砖,取得了令人满意的效果。“陶瓷杯”技术在国内也较多采用。陶瓷杯是一种砌筑在高炉炉缸上,为了延长高炉寿命,降低热损耗的陶瓷质内衬。它是以刚玉为基质,掺有或不掺有氧化铬添加剂的预制块,或是氮结合(賽隆)的砖制品及莫来石砖制品构成。它们的导热性比炭质制品低。在过去的20年里,高炉炉缸的工作条件发生了很大变化,要求高炉炉缸用耐火材料内衬须承受更加恶劣的生产条件,与此同

17、时,依靠提高内衬材料的使用寿命,达到提高高炉经济效益的(和效率)目标。传统上,炉缸主要使用碳质耐火材料,随着铁水温度的提高,高炉的产量也提高,将加速碳质耐火材料恶化的速度。为了能适应高炉新的冶炼条件,现在有两种不同的观点,一种观点主张依据热力学,另一种观点主张依据耐火材料学。热力学观点是以下列理论为依据:受热面温度越低,耐火材料损毁越慢。它强调通过高热导率的半石墨质炭块将热量传递给冷却系统。从而实现热平衡。同时,利用良好的导热性在炉缸内侧壁部位降低了工作面(热面)温度,并形成渣皮状附着物,将800等温线推至炭砖以外,保护炉缸内壁,实现炉缸系统的安全、高效、长寿。如宝钢3号、4号高炉,太钢435

18、0m3高炉、首钢1号高炉等,就是采用美国ucar公司全碳质材料炉底、炉缸结构。耐火材料学解决方法是根据众所周知的陶瓷底座,开发了新型的复合内衬,并在20世纪80年代初期砌筑使用。最先采用该复合内衬的是thyssen stahl a.g.公司hambo-rn和ruhrort厂的两座高炉,因其外形为环状,故被称为“陶瓷杯”。它强调在采用高热导率的炭块将炉缸热量传递给冷却系统的同时,通过增加具有耐高温、抗渣碱侵蚀、耐冲刷和良好的热震稳定性的陶瓷材料制成的陶瓷杯,将炉缸内的炭质材料与铁水及其它混合物分隔,从而在相当一段时间内杜绝了铁水对炭质材料炉缸的侵蚀,实现炉缸系统的安全、高效、长寿。近年来,国内很

19、多高炉炉底炉缸采用法国savoie公司和日本电极公司碳质材料-陶瓷材料复合结构。陶瓷杯具有下列优点:提高出铁温度。陶瓷杯有隔热效果,减少了从炉底和炉缸壁辐射的热量。因此,铁水能保持较高的温度从出铁口流出。隔热效果取决于高炉炉壁的厚度、炉径及产量等的不同,使用陶瓷杯铁水温度可提高1020之间。温度更高的铁水有利于铁水往炼钢厂的运输。但是应该注意:由于含有同量的硅,焦炭的消耗量不会减少。节约能源是指减少热损失而不是改善高炉的冶炼过程。如果出铁的温度比常规低,那么应该是由于sio2含量的降低。导致焦比下降,从而提高了效益。此外,因为降低了热损失,炉缸对降低温度运行极不敏感,这样从停产恢复到正常运行所

20、需的时间较短,并且容易恢复。降低了铁水的渗透。铁水的凝固温度是1150,而陶瓷内衬的内壁等温线很接近1150。因为耐火材料的膨胀,耐火制品或预制块之间的连接缝会变小。因此,渗入孔隙处的铁水是有限的,仅对耐火材料表面层的性质有所影响。整个预制块仍保持完整的性能。“脆化层”的消除。因为800等温线现在在陶瓷杯内部,所以,以前认为在碳质内衬的脆化层现已消除了。这个消除不是理论上的假设,而是被实践所证明。出铁沟磨损的消除。由于使用陶瓷杯,使炉底的深度加深了,这样以前在碳质内衬经常发生的出铁沟磨损,现在得到了很好的消除。3.2.6 出铁口用耐火材料小型高炉一般设置1个出铁口和23个出渣口中,大中型高炉则

21、有24个出铁口和13个出渣口。当铁矿石的品位较高时,渣量相应减少,大型高炉可不另设出渣口。随着高炉日益大型化,出铁次数的频繁,导致出铁口负担过重,每个出铁口日出铁量有时高达3000t左右。出铁口受到铁水、炉渣、碱的侵蚀和磨损;从出铁开始到出铁结束时温度变化的冲击;同时受到开铁口和堵铁口时的机械振动磨损。因此,出铁口的工作条件极其苛刻。过去出铁口使用的耐火材料有粘土质耐火砖、高铝质耐火砖,目前除继续使用上述耐火砖外,主要研究和使用性能优异的al2o3-sic-c质材料或炭块。堵塞出铁口用的泥料称为炮泥。炮泥应具有足够高的耐火度,并且要具备下列性能:可塑性和粘结性好,容易挤进填满空隙和裂纹。容易打

22、开,保证铁水和熔渣能均匀流出。气孔率适宜,便于干燥时排出水分。高温体积收缩小,以免产生裂纹。烧结性能好,强度好,耐冲刷和耐侵蚀。一般中小型高炉出铁口用的炮泥,主要是采用粘土熟料颗粒、焦粉和沥青混练而成的;而大中型高炉用的炮泥一般是用高铝质材料,并添加碳化硅和炭料等附加物质,以便稳定出铁口的深度。3.2.7 不定形耐火材料在高炉上的应用近十年来,国内外不定形耐火材料的发展非常迅速,品种不断增加,主要的品种有:耐火浇注料、耐火可塑实、耐火捣打料、耐火喷涂料、耐火投射料、耐火涂抹料和耐火泥浆等。不定形耐火材料对于延长炉衬寿命,提高设备的作业率、降低劳动强度以及简化耐火材料生产工艺等方面将起到促进作用

23、。在一些小高炉上,国内外采用耐火浇注料作高炉内衬,也能正常运行和达到一定的工作年限。高炉内衬是生产中的薄弱环节,特别是炉腹和炉身下部等部位尤为突出,经常因为过早的毁损而被迫停炉大修、中修。为此,各国广泛采用喷补、压入料修补和包扎维护等方法,以提高炉子的使用寿命。3.2.8 碳质耐火材料在高炉上的应用碳质耐火材料是指包括碳质、半石墨质及石墨质3个类别的耐火材料。碳质耐火材料具有较好的导热性、高温体积稳定性及耐化学侵蚀性,虽然碳质耐火材料在一定温度条件下也和空气、二氧化碳、水蒸汽发生氧化反应,在较高温度下也会受铁水及碱金属的侵蚀,但腐蚀速度较低。碳质耐火材料在耐火材料分类中通常称为“炭块”或“炭砖

24、”,两者无本质区别,一般情况下是大尺寸产品称“块”,小尺寸产品称“砖”。但大尺寸和小尺寸并无明确界限。20世纪50年代以前,世界上大多数高炉的炉衬采用粘土砖砌筑,由于粘土砖很容易受到碱金属盐类的侵蚀,即使在较低温度下也能发生化学反应,因此高炉投入运行后,在化学反应的影响下,粘土砖的荷重软化温度和耐火度不断下降,导致粘土砖在冶炼过程中逐渐被熔蚀或砌体产生裂纹,所以采用粘土砖砌筑的高炉寿命较短,有时引发炉壁、炉缸或炉底烧穿事故。20世纪50年代以后,炼铁高炉的炉底和炉缸大量使用碳质耐火材料,有的高炉炉腰、炉腹及下炉身也使用碳质耐火材料,采用碳质耐火材料以后,高炉炉役明显延长,很少发生炉底或炉缸烧穿

25、事故。但是,随着高炉大型化和强化冶炼技术的采用,炉衬耐火材料的工作条件越来越恶化,因此对炉衬耐火材料提出更高的要求。70年代末,各国研制了多种新型碳质耐火材料用于高炉的各个部位,如高密度炭块、微孔炭块、半石墨化质炭块、石墨块、半石墨质-碳化硅块、高温模压炭块等,这些新型碳块(砖)各有各的优点和适用范围。世界主要产铁国家的高炉采用碳质耐火材料的发展史见表3-5。表3-5世界主要产铁国家的高炉采用碳质耐火材料的发展历史年份美国德国英国苏联日本中国开始研究193018901944开始使用194019201945194419501957推广195519391949195819601960我国几座高炉内

26、衬选用的耐火材料见表3-6。表3-6我国几座高炉内衬选用的耐火材料炉号宝钢4号武钢6号武钢1号马钢2号马钢3号有效容积/m3炉底结构4350陶瓷底垫3200陶瓷杯2000陶瓷杯2545进口陶瓷杯907炭块综合炉底炉底石墨砖、d级炭砖、塑性结合刚玉砖、刚玉泥浆、炭素捣打料、炭素泥浆半石墨炭砖、微孔炭砖、莫来石砖、炭素捣打料、炭素泥浆半石墨炭砖、微孔炭砖、高铝砖、炭素捣打料、炭素泥浆半石墨炭砖、微孔炭砖、莫来石砖、炭素捣打料、炭素泥浆半石墨炭砖、高铝砖、炉缸热压炭砖、致密粘土砖、炭素泥浆、粘土泥浆微孔炭砖、微孔刚玉砖、炭素泥浆半石墨炭砖、微孔炭砖、复合棕刚玉砖、高铝砖、炭素捣打料、炭素泥浆微孔炭砖

27、、半石墨炭砖、黄刚玉预制块、炭素捣打料、炭素泥浆半石墨炭砖、高铝砖炉腹石墨砖、炭素泥浆、炭素捣打料sialon结合sic砖、sic泥浆sialon结合sic砖、sic泥浆si3n4结合sic砖、冷却壁冷镶、莫来石喷涂料si3n4结合sic砖、冷却壁冷镶、高铝砖炉腰石墨砖、炭素泥浆、碳化硅砖si3n4结合sic砖、sic泥浆si3n4结合sic砖、sic泥浆、压入泥浆si3n4结合sic砖、sic泥浆、sic捣打料和喷涂料si3n4结合sic砖、sic泥浆和捣打料、高铝砖炉身下部石墨砖、炭素泥浆、碳化硅砖si3n4结合sic砖、sic捣打料、压入泥浆si3n4结合sic砖、sic缓冲料、压入泥浆

28、si3n4结合sic砖、sic泥浆、sic捣打料和喷涂料si3n4结合sic砖、sic泥浆和捣打料、高铝砖炉身上部石墨砖、炭素泥浆、碳化硅砖、si3n4结合sic砖、sic捣打料、缓冲料和泥浆、浸磷粘土砖、粘土泥浆、高铝质捣打料和缓冲料、铁屑填料si3n4结合sic砖、sic捣打料、缓冲料和泥浆、浸磷粘土砖、粘土泥浆、高铝质捣打料和缓冲料、铁屑填料si3n4结合sic砖、sic捣打料和泥浆、浸磷粘土砖、粘土泥浆si3n4结合sic砖、sic捣打料和泥浆、浸磷粘土砖、粘土泥浆炉喉自流浇注料、炭素填料、高铝喷涂料炉喉钢砖(粘土质高强度浇注料)、铁屑填料炉喉钢砖(粘土质高强度浇注料)、铁屑填料普通粘

29、土浇注料普通粘土浇注料铁口组合砖刚玉-莫来石砖刚玉-莫来石砖黄刚玉预制块塑性结合刚玉砖风口组合砖硅线石砖、高铝泥浆刚玉-莫来石砖刚玉-莫来石砖刚玉-莫来石砖高铝砖备注炉底水冷管部位用材料有炭素捣打料、耐热混凝土炉底水冷管部位用材料有炭素捣打料、耐热混凝土炉底水冷管部位用材料有炭素捣打料、耐热混凝土炭素捣打料、粘土浇注料炭素捣打料、粘土浇注料3.2.9 各部位用耐火制品的理化指标、尺寸误差和要求3.2.9.1 高铝砖高炉用高铝砖是以高铝矾土熟料为主要原料制成的用于砌筑高炉的耐火制品,yb/t5015-1993将高炉用高铝砖按理化指标分为gl-65、gl-55、gl-48三种牌号,其理化指标、尺寸

30、允许偏差及外观见表3-7和表3-8表3-7高炉用高铝砖的理化指标项目指标gl-65gl-55gl-48(al2o3)/%655548(fe2o3)/%2.0耐火度/1790177017500.2mpa荷重软化开始温度/150014801450重烧线变化率/%1500,2h0-0.2-1400,2h0-0.2显气孔率/%1918常温耐压强度/mpa58.849.0透气度必须进行此项检验,将实测数据在质量证明书中注明表3-8高炉用高铝砖的尺寸允许偏差及外观(mm)项目指标尺寸允许偏差长度炉底砖±2其它砖±1.5%宽度±2厚度±2炉底砖1其它砖1.5缺棱、缺角

31、深度5熔洞直径5裂纹长度宽度0.25不限制(不准成网状)宽度0.260.5015宽度0.50不准有3.2.9.2 粘土砖高炉用粘土砖是以耐火粘土为原料生产的用来砌筑高炉内衬的粘土砖。高炉用粘土砖用于大高炉炉身及小高炉炉衬的炉喉、炉身、炉底。高炉用粘土砖要求常温耐压强度高,能够抵抗炉料长期作业磨损;在高温长期作业下体积收缩小,有利于炉体保持整体性;显气孔率低和al2o3含量低,减少炭素在气孔中的沉积,避免砖在使用过程中膨胀疏松而损坏;低熔点物形成少,高炉用粘土砖比一般粘土砖具有优良性能。yb/t5050-1993将高炉用粘土砖按理化指标分为zgn-42和gn-42两种牌号,其理化指标、尺寸允许偏

32、差及外观见表3-9和表3-10。表3-9高炉用粘土砖的理化指标项目指标zgn-42gn-42(al2o3)/%4242(fe2o3)/%1.61.7耐火度/175017500.2mpa荷重软化开始温度14501430重烧线变化/%(1450,3h)0-0.20-0.3显气孔率/%1516常温耐压强度/mpa58.849.0透气度必须进行此项检验,将实测数据在质量证明书中注明表3-10高炉用粘土砖的尺寸允许偏差及外观(mm)项目指标尺寸允许偏差长度炉底砖±2其它砖±1.0%宽度±2厚度±1扭曲炉底砖34513451.5其它砖1.5缺棱、缺角深度5.0熔洞直

33、径3.0裂纹长度宽度0.25不限制(不准成网状)宽度0.260.5015宽度0.50不准有渣蚀不准有表3-11磷酸浸渍粘土砖的理化指标项目指标(al2o3)/%4145(p2o5)/%7(fe2o3)/%1.80.2mpa荷重软化开始温度/1450重烧线变化(1450,3h)/%-0.20显气孔率/%14常温耐压强度/mpa60抗碱性(强度下降率)/%15表3-12磷酸浸渍粘土砖的尺寸允许偏差及外观(mm)项目指标尺寸允许偏差长度±2宽度±2厚度±1扭曲砖长3451砖长3451.5裂纹长度宽度0.25不限制宽度0.260.5015宽度0.50不准有缺棱、缺角深度(

34、abc)25熔洞直径33.2.9.3 磷酸浸渍粘土砖高炉用磷酸浸渍粘土砖是砌筑高炉内衬用的磷酸浸渍粘土砖。yb/t112-1997规定高炉用磷酸浸清粘土砖的代号为cln-42,其理化指标,尺寸允许偏差及外观见表3-11和表3-12。3.2.9.4 碳化硅砖碳化硅砖是用碳化硅为主要原料烧制的耐火制品。其主要特征是sic为共价结合,不存在通常的烧结性,依靠化学反应生成新相达到烧结。20世纪70年代sic质耐火材料在国外高炉上使用后,取得了很好的使用效果,一代高炉寿命延长到10年或10年以上。我国1985年在鞍钢6号高炉上首次使用si3n4结合碳化硅砖获得成功,对sic制品的研究与开发逐步深入,产品

35、性能不断提高。目前,我国高炉用优质碳化硅砖主要品种有:si3n4结合碳化硅砖,sialon结合碳化硅砖和自结合(sic结合)碳化硅砖。si3n4结合碳化硅砖。si3n4结合碳化硅砖是用sic和si粉为原料,经氮化烧成的耐火制品。sic、si3n4都是共价键化合物,烧结非常困难。在多级配的sic颗粒和细粉中,加入磨细的工业硅粉,si与n在高温下按下式进行烧结反应:2n3si si3n4。反应生成的si3n4与sic颗粒紧密结合而形成以si3n4为结合相的碳化硅制品。经研究发现,大多数si3n4结合相为针状或纤维状结构,存在于sic颗粒周围或孔隙处,si3n4呈纵横交错的结构与sic颗粒紧密结合,

36、使这种新型的耐火材料具有很高的常温和高温强度。yb4035-1991规定,高炉用氮化硅结合碳化硅砖按其理化指标将制品分为两类,分别为dtz-1和dtz-2。标准规定制品的理化指标应符合表3-13的要求。高炉用标准型号制品的尺寸允许偏差及外观应符合表3-14的规定。高炉用非标准型号制品的尺寸允许偏差及外观要求,一般由供需双方协议来定。表3-13高炉用氮化硅结合碳化硅砖的理化指标项目指标dtz-1dtz-2显气孔率/%1719体积密度/g·cm32.522.58常温耐压强度/mpa150157常温抗折强度/mpa43.039.2(sic)/%7270(si3n4)/%2120(fe2o3

37、)/%1.52.0表3-14高炉用标准型号制品的氮化硅结合碳化硅砖尺寸允许偏差及外观(mm)项目指标dtz-1dtz-2尺寸允许偏差长度±2±2宽度±1.5±2厚度1.01.5±1.5扭曲长度2301.51.5长度23135022裂纹长度宽度0.25不限制不限制宽度0.260.501515宽度0.50不准有不准有缺棱、缺角深度55熔洞直径55渣蚀不准有不准有注:高炉用非标准型号制品的氮化硅结合碳化硅砖尺寸允许偏差及外观要求,由供需双方协议。sialon结合sic砖。在1700时,在si3n4-al4n4-al2o3-si3o6构成的正方形相图中

38、,有以si3n4为起点的4/3(al2o3、aln)延伸,组成在相当大范围内变化的sialon相;有以si2on2为起点的大体向x方向延伸,组成在较小范围内变化的o-sialon相。在氮化硅结合制品的生产过程中,加入适量加入物,使氧进入si3n4晶格,生成一定数量的sialon固熔体相,制出sialon结合的sic砖。表3-15为sialon结合sic砖的理化指标。自结合sic砖。在工业-sic原料中加入工业硅和碳,在高温还原气氛下发生si(s)c sic(s)的反应,生成- sic,与原生高温型-sic颗粒结合,制出自结合sic材料,使制品具有良好的性能。表3-16为我国生产的sic质耐火制

39、品与国外的sic质制品的理化指标相比,我国生产的sic质耐火制品各方面指标均达到了国外同类产品的水平。表3-15sialon结合sic砖的理化指标项目指标项目指标(sic)/%72常温抗折强度/mpa54(n)/%5.8热态抗折强度/mpa(1400,0.5h)55(fe2o3)/%0.5热震稳定性(1100 水冷)/次30荷重软化开始温度(0.2mp×0. 6%)/1700线膨胀系数(201000)/k-14.9×10-6显气孔率/%13热导率/w·(m·k)-125(20)体积密度/g·cm32.8013(1200)耐压强度/mpa200抗

40、碱性评价u表3-16我国高炉用优质碳化硅制品和国外的同类耐火制品的理化指标制品指标si3n4结合sic砖sialon结合sic砖自结合sic砖美国si3n4结合sic砖英国sialon结合sic砖日本自结合sic砖结合相si3n4sialon-sic为主si3n4sialon-sic为主体积密度/g·cm32.732.702.702.652.702.67显气孔率/%13151514.31416耐压强度/mpa228.6220.2162161213166.1抗折强度/mpa常温53.852.748.3434737.1140056.949.839.054(1350)48(1350)42热

41、导率/w·(m·k)-180018.619.416.3(1000)20120015.7(1300)1616.917线膨胀系数(201000)/k-14.6×10-65.1×10-64.2×10-64.7×10-65.1×10-64.4×10-6化学成分/%sic707087.7675.685.38si3n42020.6sialon20si 0.39fe2o30.310.420.51.793.2.9.5 铝炭砖氮化硅结合碳化硅砖在高炉炉身下部的使用效果好,但该砖价格过高(每吨85009000元)难以普遍推广。我国耐火

42、材料工作者,在借鉴炼钢用铝炭质滑板砖的生产工艺基础上,开发了高炉铝炭砖,该砖性能优良、价格便宜,已在大中小型高炉上推广应用。高炉铝炭砖采用特级高铝矾土熟料,鳞片状石墨及sic为主要原料,添加抗碱剂及其它附加物,用酚醛树脂为结合剂,机压成型,按烧成和不烧成分为致密型(烧成温度不大于1450)和普通型铝炭砖,经200250低温固化焙烧。高炉铝炭砖具有气孔率低、透气度低、耐压强度高、热导率高、抗渣、抗碱、抗铁水溶蚀及抗热震性好等各种优良性能。铝炭砖。yb/t5269-1999适用于以低铁高铝矾土熟料、鳞片状石墨为主要原料,酚醛树脂为结合剂,经机压成型工艺制成的铝炭砖。该产品适用于砌筑中小型高炉炉身及

43、炉底。铝炭砖理化指标应符合表3-17的规定,高炉用标准型铝炭砖的尺寸允许偏差及外形应符合gb2278的规定。表3-17铝炭砖的理化指标项目指标项目指标tkl-1tkl-2tkl-1tkl-2(al2o3)/%5855常温耐压强度/mpa3025(sic)/%54常温抗折强度/mpa129(固定炭)/%1412体积密度/g·cm32.52.5显气孔率/%1315平均线膨胀系数(1000)/ -12.4×10-62.4×10-60.2mpa荷重软化开始温度/16301600表3-18铝炭砖的尺寸允许偏差(mm)项目允许偏差项目允许偏差尺寸允许偏差100±1.

44、5缺角5.0101200±1.5缺棱4.0201300±2.0熔洞不准有300±2.0裂纹0.1不限扭曲长度3001.50.10.330长度3002.00.3不准有烧成微孔铝炭砖。烧成微孔铝炭砖是指平均孔径不大于1m的孔容积占开口气孔总容积的比例(%)不小于70%的烧成铝炭砖。烧成微孔铝炭砖一般用于砌筑高炉内衬。yb/t113-1997将烧成微孔铝炭砖,按理化指标分为wlt-1、wlt-2、wlt-3三个等级。砖的理化指标应符合表3-19的规定,砖的尺寸允许偏差及外观应符合表3-20的规定。表3-19烧成微孔铝炭砖的理化指标项目指标wlt-1wlt-2wlt-3(

45、al2o3)/%656055(c)/%11119(tfe)/%1.51.51.5常温耐压强度/mpa706050体积密度/g·cm32.852.652.55显气孔率/%161718铁水溶蚀指数/%234热导率(0800)/w·(m·k)-1131313抗碱性(强度下降率)/%101010透气度/m2(mda)4.94×10-4(0.5)1.97×10-3(2.0)1.97×10-3(2.0)平均孔径/m0.5111m孔容积/%807070注1. 孔径分布检测范围:0.006360m;2. 铁水溶蚀指数仅用于炉缸和炉底。表3-20烧成微

46、孔铝炭砖的尺寸允许偏差及外观(mm)项目指标wlt-1wlt-2wlt-3尺寸允许偏差长度±1.5±2宽度±1.5±2厚度±1±1扭曲长度34511长度34511.5裂纹长度宽度0.25不限制不限制宽度0.260.501515宽度0.50不准有不准有缺棱、缺角长度(abc)2525熔洞直径33注:用该砖砌筑炉底时尺寸允许偏差要求严,磨砖应达到用户要求。3.2.9.6 炭砖炭砖是用热处理无烟煤或焦炭、石墨为主要原料,以焦油沥青或酚醛树脂为结合剂制成的耐火制品。炭砖在高炉中的应用发展很快。炭砖具有以下性质:耐火度高;极高有荷重软化温度;高

47、温耐磨性能良好;良好的化学稳定性;高温体积稳定性好;良好的导热性和导电性;抗热震性好。高温下易氧化。炭砖的以上特性,很适应高炉炉底和炉缸生产特点对内衬的要求。近年来,炭砖的使用范围不断扩大,炉腹和炉身下部也开始采用炭砖。高炉炭块。yb2804-1991规定了高炉炭块和炭键的理化指标和尺寸允许偏差,见表3-21和表3-22。表3-21高炉炭块和炭键的理化指标项目指标项目指标炭块炭键炭块炭键(灰分)/%102体积密度/g·cm31.50耐压强度/mpa3030耐碱性/级c气孔率/%2228抗折强度/mpa8注:1.热导率、透气度两项作为参考指标。2.每生产一座高炉的炭块,要为用户提供热导

48、率(800、400、200)和透气度指标。表3-22高炉炭块和炭键的尺寸允许偏差(mm)名称部位砌筑方法允许偏差宽度高度长度有工作端无工作端炭块满铺炉底卧砌宽缝1,4±1±5±10窄缝±1±1±5±10立砌窄缝±1±1±1综合炉底及炉缸等部位环型层1,2±1±5炭键直径±1,长度±5键槽直径±2,相邻块键槽的同轴度偏差不大于2半石墨炭砖。关石墨炭砖是采用高温煅烧无烟煤、石墨、添加剂为主要原料而制成的耐火制品。半石墨质炭砖配方中一般不使用冶金焦为粉

49、料,而使用磨碎的石墨为粉料,半石墨砖的导热性能非常好,而且抗碱金属盐类腐蚀的能力也比普通炭砖好。我国某些耐火材料厂生产的半石墨炭砖的理化指标见表3-23。表3-23半石墨炭砖理化指标项目指标wsbhybgyb真密度/g·cm31.901.9体积密度/g·cm31.521.551.5显气孔率/%182020氧化率/%20透气度/mda60抗折强度/mpa8.597.8耐压强度/mpa303530铁水溶蚀指数/%30抗碱性能u,lcu,lc平均孔半径/m1.251.0m/%56灰分/%78热导率/w·(m·k)-1常温7800,8800,7300960010

50、90012自焙炭块。自焙炭块及自焙炭块技术是一种新型炭质炉衬材料和成套炉衬技术。自焙炭块除了具有传统的焙烧炭块所具有的耐高温、高温强度大、不易粘渣铁、耐侵蚀等特性外,能够利用烘炉和生产过程中的热量逐步焙烧成坚实、致密近于无缝的整体炉衬。我国耐火材料厂生产的自焙炭块的理化指标见表3-24。表3-24自焙炭块的理化指标项目指标hyzgyz自焙炭块抗氧化自焙炭块tkz-1tkz-2焙烧前焙烧后(800)焙烧前焙烧后(800)焙烧前焙烧后(800)焙烧前焙烧后(800)(固定炭)/%8593909385938290(灰分)/%567.36.256910体积密度/g·cm31.621.521.

51、631.541.621.521.61.5显气孔率/%102010.52010201323耐压强度/mpa313130.431.631312626800焙烧后收缩率/%0.060.050.050.1抗氧化率/%15抗碱性能/级0热导率/w·(m·k)-18.0微孔炭块。微孔炭块是用高温电燃烧无烟煤、人造石墨、碳化硅为主要原料,煤焦油沥青为粘结剂,加入多种添加剂微粉,经过振动成型、高温焙烧、精磨加工而制成的,主要用于高炉炉底上部和炉缸、出铁口。yb/t141-1998规定的微孔炭块的理化指标见表3-25。表3-25微孔炭块的理化指标项目指标项目指标真密度/g·cm31.90抗碱性能/级u,lc体积密度/g·cm31.54平均孔半径/m0.5显气孔率/%181.0m/%70氧化率/%10热导率/w·(m·k)-1常温7透气度/mda143009耐压强度/mp

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论