反比例函数知识点归纳(重点)_第1页
反比例函数知识点归纳(重点)_第2页
反比例函数知识点归纳(重点)_第3页
反比例函数知识点归纳(重点)_第4页
反比例函数知识点归纳(重点)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构现实世界中的反比例函数反1:匕例关系J11实际应用反比例函数的7.图家和性质(二)学习目标1 理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式FIy x (k为常数,鸟H 0),能判断一个给定函数是否为反比例函数.2 能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理 解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.k 3 能根据图象数形结合地分析并掌握反比例函数X ( k为常数,上)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4 对于实际问题,能

2、找出常量和变量,建立并表示函数模型,讨论函数模型,解决实 际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5 进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认 识数形结合的思想方法.(三)重点难点1 重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握 和运用.2 难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念k,注意自变量 x的指数为1 ,i. » x(上hQ)可以写成y= (上hQ)的形式在解决有关自变量指数问题时应特别注意系数这一限制条件;k y- 2. 3 反比例函数 X的自变量,故函

3、数图象与x轴、y轴无交点.X (上丰Q )也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;(二)反比例函数的图象在用描点法画反比例函数kyX的图象时,应注意自变量x的取值不能为0 ,且x应对称取点(关于原点对称)(三)反比例函数及其图象的性质1.函数解析式:2 .自变量的取值范围:3 .图象:(1 )图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直."-越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.y随x的增大而减小;y随x的增大而增大.当 - 1时,图象的两支分别位于一、三象限;

4、在每个象限内,当;1时,图象的两支分别位于二、四象限;在每个象限内,(3)对称性:图象关于原点对称,即若( a, b)在双曲线的一支上,U (至,) 在双曲线的另一支上.图象关于直线上-对称,即若(a, b)在双曲线的一支上,则(,)和(一丿)在双曲线的另一支上.4. k的几何意义k丿=一如图1,设点P (a, b)是双曲线X上任意一点,作 PA±x轴于A点,PB丄y轴于B点,则矩形PBOA的面积是阳(三角形PAO和三角形PBO的面积都是訥).如图2,由双曲线的对称性可知,P关于原点的对称点 Q也在双曲线上,作 QC丄PA的图1图25 说明:当何占v°时,两图象没有交点;当

5、 耐乜时,两图象必有两个交点,且这两 个交点关于原点成中心对称.(3) 反比例函数与一次函数的联系.(四) 实际问题与反比例函数1求函数解析式的方法:(1) 待定系数法;(2 )根据实际意义列函数解析式.2 .注意学科间知识的综合,但重点放在对数学知识的研究上.(五) 充分利用数形结合的思想解决问题.三、例题分析1 反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A. y=3xy-3=2xC. 3xy=1A.1B .1 y=X(2)下列函数中,答案:(1) C; (2) A .y是x的反比例函数的是(C.2 .图象和性质(1 )已知函数是反比例函数,过第若它的图象在第二、四象限内

6、,若y随x的增大而减小,那么(2)已知一次函数象限.象限.(4)已知 a bv 0,则直线那么 k=k=y=ax+b的图象经过第一、二、四象限,则函数ah y= 的图象位于kJ/ x经过点(-1 , 2),则一次函数v = -h+2(3)若反比例函数的图象一定不经点P (a, b)在反比例函数' 不经过的象限是().ay-:.的图象上,A. 第一象限B. 第二象限C. 第三象限D. 第四象限k(5 )若P (2 , 2 )和Q ( m , 是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A .第一、二、三象限C .第一、三、四象限B .第一、二、四象限D .第二、三、四

7、象限().答案:(1 一I; (2 )一、三;(3)四;(4) C; ( 5) C; (6) B .3 .函数的增减性j = -(i <0),且(1)在反比例函数x的图象上有两点 丑乜刃,则/厂丄 的值为().C .非正数D .非负数A .正数B .负数(2)在函数-a-尸(a为常数)的图象上有三个点则函数值的大小关系是(爪为、必A.).B.皿1,”),(+乃)£,丹),C.D(3 )下列四个函数中y随x的增大而减小的函数有().A. 0个B . 1个C . 2个D. 3个ky (4)已知反比例函数 ;一的图象与直线y=2x和y=x+1的图象过同一点,则当时,这个反比例函数的函

8、数值y随x的增大而(填 增大"或 减小”.答案:(1) A; (2) D ; (3) B .注意,(3)中只有是符合题意的,而 是在 每一个象限内” y随x的增大而减小.(1)若y与工成反比例,X与z成正比例,则y是z的().A 正比例函数B 反比例函数C 一次函数D 不能确定I Fy“(2) 若正比例函数y=2x与反比例函数x的图象有一个交点为(2, m),贝Um= , k=,它们的另一个交点为 _ 沪y (3) 已知反比例函数' 孟的图象经过点(-2厂8),反比例函数x的图象在第二、四象限,求的值._廉+1(4) 已知一次函数 y=x+m与反比例函数上 (土二1)的图象在

9、第一象限内 的交点为P (x 0, 3) 求x 0的值;求一次函数和反比例函数的解析式.1谑克)6ZL08彳(分钟)(5)为了预防非典”某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量 y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题: 药物燃烧时y关于x的函数关系式为 ,自变量x的取值范围是 ;药物燃烧后y关于x的函数关系式为 研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过 分钟后,学生

10、才能回到教室; 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B ;(2)4, 8,( _,-);(3)依题意,轉=02)x(-8)且<0,解得 m-A (4)依题意,X)+>» = 3>3x0 = w+l>0;解得一次函数解析式为,反比例函数解析式为3y=-(5)尸迤Qg)-3x-1325>1030 ;消毒时间为34(分钟),所以消毒有效.5 面积计算(1)如图,在函数3'的图象上有三个点 A、B、C,过这三个点分别向轴作垂线,过每一点所作的两条垂线

11、段与 x轴、y轴围成的矩形的面积分别为'1x轴、y-、二,则()第(1)题图第(2)题图(2)如图,A、B是函数1二一的图象上关于原点 O对称的任意两点,AC/y轴,BC/X轴,ABC的面积S,则().A. S=1B. 1v S v 2C. S=2(3)如图,RtAAOB的顶点A在双曲线m尸一x1rIk".a第(3)题图D . S > 2(4 )已知函数4y=-X的图象和两条直线 y=x , y=2x在第一象限内分别相交于 P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为 Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足

12、分别为 Q 2,R 2,求矩形 O Q 1P1 R 1和O Q 2P2R2的周长,并比较它们的大小.(5) 如图,正比例函数 y=kx ( k>0)和反比例函数的图象相交于 A、C两点,过A作x轴垂线交x轴于B ,连接BC ,若AABC面积为则S=kr第(6)题图1),1),ky=-(6)如图在 RtAABO中,顶点 A是双曲线X与直线在第四象限1),1),的交点,AB ±x轴于B且S ABO= - .1),点A、C分别在x轴、y轴上,点B在函数y X (k >0, x>0)的图象上,点 P (m , n)求这两个函数的解析式;求直线与双曲线的两个交点 A、C的坐标

13、和AOC的面积.(7)如图,已知正方形OABC的面积为9,点0为坐标原点,1),1),是函数/. (k> 0, x>0)的图象上任意一点, 过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为 S .求B点坐标和k的值;J-时,求点P的坐标;写出S关于m的函数关系式.1),1),答案:(1) D;(2) C ; (3) 6 ;1),1),,矩形 O Q 1P1 R 1的周长为8 , O Q 2P2 R 2的周长为邑L,前者大.(5)(6)双曲线为,直线为直线与两轴的交点分别为(0,一2)和(一2, 0),且 a( i, -3)和C (仝,1),

14、1),因此 U0C 面积为4 .(7 )©B ( 3 , 3), k 二、;932P(6, 2)2 时,E (6, 0) ,2 ; 1 .仇.综合应用(1)若函数y=k1x (k1 M0)和函数(k2老)在同一坐标系内的图象没有公共1),1),A .互为倒数B 符-号相冋C.绝对值相等D .符号相反 /yV(2)如图,一次函数y匚氷+ by-的图象与反比例数畫的图象交于 A、B 两点:A (-2, 1), B (1, n).求反比例函数和一次函数的解析式;根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3 )如图所示,已知一次函数y = kx+b(k和)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m老)的图CD垂直于x轴,垂足为 D,若0A=0B=0D=1.求点A、B、D的坐标;求一次函数和反比例函数的解析式.1),(4)如图,一次函数二心卜:的图象与反比例函数.的图象交于第一象限 C、D两点,坐标轴交于 A、B两点,连结OC, OD ( O是坐标原点) 利用图中条件,求反比例函数的解析式和m的值; 双曲线上是否存在一点 P,使得 POC和厶POD的面积相等?若存在,给出证明并 求出点P的坐标;若不存在,说明理由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论