版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、换元定积分换元定积分定理定理 假假设设(1 1))(xf在在,ba上上连连续续;(2 2)函函数数)(tx 在在, 上上是是单单值值的的且且有有连连续续导导数数;(3 3)当)当t在区间在区间, 上变化时,上变化时,)(tx 的值的值在在,ba上变化,且上变化,且a )( 、b )( , 则则 有有dtttfdxxfba )()()(. .一、换元公式一、换元公式应用换元公式时应注意应用换元公式时应注意:(1)求求出出)()(ttf 的的一一个个原原函函数数)(t 后后,不不必必象象计计算算不不定定积积分分那那样样再再要要把把)(t 变变换换成成原原变变量量x的的函函数数,而而只只要要把把新新
2、变变量量t的的上上、下下限限分分别别代代入入)(t 然然后后相相减减就就行行了了.(2)用用)(tx 把把变变量量x换换成成新新变变量量t时时,积积分分限限也也相相应应的的改改变变.例例1 1 计算计算.sincos205 xdxx解解令令,cosxt 2 x, 0 t0 x, 1 t 205sincosxdxx 015dtt1066t .61 ,sin xdxdt 例例2 2 计算计算解解.sinsin053 dxxxxxxf53sinsin)( 23sincosxx 053sinsindxxx 023sincosdxxx 2023sincosdxxx 223sincosdxxx 2023s
3、insinxdx 223sinsinxdx 2025sin52 x 225sin52x.54 例例3 3 计算计算解解.)ln1(ln43 eexxxdx原式原式 43)ln1(ln)(lneexxxd 43)ln1(ln)(lneexxxd 432)ln(1ln2eexxd 43)lnarcsin(2eex .6 例例4 4 计算计算解解 aadxxax022)0(.1令令,sintax ax ,2 t0 x, 0 t,costdtadx 原式原式 2022)sin1(sincosdttatata 20cossincosdtttt 20cossinsincos121dttttt 20coss
4、inln21221 tt.4 例例 5 5 当当)(xf在在,aa 上上连连续续,且且有有 )(xf为为偶偶函函数数,则则 aaadxxfdxxf0)(2)(; )(xf为为奇奇函函数数,则则 aadxxf0)(.证证,)()()(00 aaaadxxfdxxfdxxf在在 0)(adxxf中中令令tx , 0)(adxxf 0)(adttf,)(0 adttf)(xf为为偶偶函函数数,则则),()(tftf aaaadxxfdxxfdxxf00)()()(;)(20 adttf)(xf为为奇奇函函数数,则则),()(tftf aaaadxxfdxxfdxxf00)()()(. 0 奇函数奇函数例例6 6 计算计算解解.11cos21122 dxxxxx原式原式 1122112dxxx 11211cosdxxxx偶函数偶函数 1022114dxxx 10222)1(1)11(4dxxxx 102)11(4dxx 102144dxx.4 单位圆的面积单位圆的面积几个特殊积分、定积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光学影像技术专业介绍
- 柳州八中高考试卷及答案
- 2024译林版四年级英语上册Unit 7 Seasons每课时学习任务单汇编(含三个任务单)
- 光伏机械设备安全培训课件
- 光伏培训教学课件
- 先进软件介绍
- 2024统编版八年级道德与法治下册期末学情评估卷(含答案)
- 分解因式题目及答案
- 法律法规考试题及答案
- 13类应用文写作架构+高阶模板+经典范文+语料储备(解析版)-2026年高考英语一轮复习知识清单
- 2025食品行业专利布局分析及技术壁垒构建与创新保护策略报告
- 2025四川省教育考试院招聘编外聘用人员15人考试笔试模拟试题及答案解析
- 物业管家述职报告
- 渣土运输消纳合同范本
- 公司贷款走账合同范本
- 2025版骨髓增生异常综合征中国诊断与治疗指南(全文版)
- 操作系统原理(慕课版)-教学课件全套
- 水产品速冻能效优化-洞察与解读
- 会议纪要标准化撰写格式及案例参考
- 2025年国家开放大学《刑事诉讼法》期末考试备考试题及答案解析
- 论文导论范文
评论
0/150
提交评论