




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、攸县一中攸县一中 汤庆平汤庆平 1、在初中我们是如何定义锐角三角函数的?、在初中我们是如何定义锐角三角函数的?sincostancacbba oabmpc1.2任意角的三角函数任意角的三角函数oabmp yx 2.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?22:baropbmpaom其中 yx2.在直角坐标系中如何用坐标表示锐角三角函数?在直角坐标系中如何用坐标表示锐角三角函数?raopomcosrbopmpsinabommptanbap,mo如果改变点在终边上的位置,这三个比值会改变吗?如果改变点在终边上的位置,这三个比值会改变吗?pmopmpsin
2、opomcosommptanomppmopopmpoommopmmoyxp(a,b)opmpsinopomcosommptan,则若1 ropbaab 3.锐角三角函数(在单位圆中)锐角三角函数(在单位圆中)以原点以原点o为为圆心,以单位圆心,以单位长度为半径的圆,称为单位圆长度为半径的圆,称为单位圆. yop),(bax1m 2.任意角的三角函数定义任意角的三角函数定义 设 是一个任意角,它的终边与单位圆交于点),(yxp 那么:(1) 叫做 的正弦正弦,记作 ,即 ;ysinysin (2) 叫做 的余弦余弦,记作 ,即 ; cosxxcos(3) 叫做 的正切正切,记作 ,即 。 xyt
3、anxytan 所以,正弦,余弦,正切都所以,正弦,余弦,正切都是以是以角为自变量角为自变量,以,以单位圆单位圆上点上点的的坐标或坐标的比值坐标或坐标的比值为函数值的为函数值的函数,我们将他们称为函数,我们将他们称为三角函数三角函数.0 , 1aoyxyxp ,)0(x使比值有意义的角的集合使比值有意义的角的集合即为三角函数的定义域即为三角函数的定义域.(1)正弦就是交点的纵坐标,余弦就是交点)正弦就是交点的纵坐标,余弦就是交点横坐标的比值横坐标的比值. .的横坐标,的横坐标,交点的纵坐标与交点的纵坐标与. .(2) 正弦、余弦总有意义正弦、余弦总有意义.当当 的终边在的终边在 y横坐标等于横
4、坐标等于0, xytan无意义,此时无意义,此时 )(2zkk轴上时,点轴上时,点p 的的(3)由于角的集合与实数集之间可以建立一一对应关系,)由于角的集合与实数集之间可以建立一一对应关系,三角函数可以看成是自变量为实数的函数三角函数可以看成是自变量为实数的函数. 正切就是正切就是 任意角的三角函数的定义过程:任意角的三角函数的定义过程:直角三角形中定义锐角三角函数 abrarbtan,cos,sin直角坐标系中定义锐角三角函数 abrarbtan,cos,sin单位圆中定义锐角三角函数 ababtan,cos,sin单位圆中定义任意角的三角函数 ,sinyxcosxytan,例例1 求求 的
5、正弦、余弦和正切值的正弦、余弦和正切值.3535aob解:在直角坐标系中,作解:在直角坐标系中,作 aob,易知,易知 的终边与单位圆的交点坐标为的终边与单位圆的交点坐标为 )23,21(所以所以 2335sin2135cos335tan思考:若把角思考:若把角 改为改为 呢呢? 3567,2167sin, ,2367cos3367tanxyoab35例例2 已知角已知角 的终边经过点的终边经过点 ,求角,求角 的正弦、余的正弦、余弦和正切值弦和正切值 .)4, 3(0p5) 4() 3(220op解解:由已知可得由已知可得设角设角 的终边与单位圆交于的终边与单位圆交于 ,),(yxp分别过点
6、分别过点 、 作作 轴的垂线轴的垂线 、0pmpp00pmx400pm 于是,于是, ;54|1sin000oppmopmpyyymp30omxomomp00pom;531cos00opomopomxx34cossintanxy4, 30p0moyxmyxp , 设角设角 是一个任意角,是一个任意角, 是终边上的任意一点,是终边上的任意一点,点点 与原点的距离与原点的距离),( yxp022yxrp那么那么 叫做叫做 的正弦,即的正弦,即ryrysin 叫做叫做 的余弦,即的余弦,即rxrxcos 叫做叫做 的正弦,即的正弦,即xy0tanxxy 任意角任意角 的三角函数值仅与的三角函数值仅与
7、 有关,而与点有关,而与点 在角的在角的终边上的位置无关终边上的位置无关.p135122222yxr1312cosrx125tanxy135sinry于是于是,练习练习 1、已知角、已知角 的终边过点的终边过点 , 求求 的三个三角函数值的三个三角函数值.5 ,12p解:由已知可得:解:由已知可得:2p15 ,8aa、已知角 的终边上一点ar且a0 ,sin,cos ,tan求角 的的值.-15 ,8 ,xa ya解:由于22158170raaa a所以 1017 ,ara若则于是88151588sin,cos,tan171717171515aaaaaa 20-17 ,ara若则于是88151
8、588sin,cos,tan171717171515aaaaaa 32sin ,cos ,tan.yx、已知角 的终边在直线上,求角 的的值 1解: 当角 的终边在第一象限时,221,2125在角 的终边上取点,则r=225152sin,cos, tan255155 2当角的终边在第三象限时,221, 2125r 在角的终边上取点,则22 5152sin,cos,tan255155 1.根据三角函数的定义,确定它们的定义域根据三角函数的定义,确定它们的定义域(弧度制)(弧度制)三角函数三角函数定义域定义域sincostanr)(2zkk2.确定三角函数值在各象限的符号确定三角函数值在各象限的符
9、号yxosinyxocosyxotan+( )( )( )( )( )( )( )( )( )( )( )r+-+-+-+- 例例3 求证:当且仅当下列不等式组成立时,求证:当且仅当下列不等式组成立时, 角角 为第三象限角为第三象限角.0tan 0sin 证明:证明: 因为因为式式 成立成立,所以所以 角的终边可能位于第三角的终边可能位于第三 或第四象限,也可能位于或第四象限,也可能位于y 轴的非正半轴上;轴的非正半轴上;0sin 又因为又因为式式 成立,所以角成立,所以角 的终边可能位于的终边可能位于第一或第三象限第一或第三象限. 0tan 因为因为式都成立,所以角式都成立,所以角 的终边只
10、能位于第三象限的终边只能位于第三象限.于是角于是角 为第三象限角为第三象限角.反过来请同学们自己证明反过来请同学们自己证明.如果两个角的终边相同,那么这两个角的如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?同一三角函数值有何关系? 终边相同的角的同一三角函数值相等(公式一)终边相同的角的同一三角函数值相等(公式一)tan)2tan(cos)2cos(sin)2sin(kkk其中其中zk 利用公式一,可以把求任意角的三角函数值,转化为利用公式一,可以把求任意角的三角函数值,转化为求求 角的三角函数值角的三角函数值 .360020到或到 ? 例例4 确定下列三角函数值的符号:确定下列
11、三角函数值的符号: (1) (2) (3)解:解:250cos)672tan(4sin(1)因为)因为 是第三象限角,所以是第三象限角,所以 ;2500250cos(2)因为)因为 = , 而而 是第一象限角,所以是第一象限角,所以 ;)672tan(48tan)360248tan(0)672tan(48练习练习 确定下列三角函数值的符号确定下列三角函数值的符号516cos)34sin()817tan( (3)因为)因为 是第四象限角,所以是第四象限角,所以 .404sin 例例5 求下列三角函数值:求下列三角函数值: (1) (2)49cos)611tan( 解:(解:(1) 224cos)24cos(49cos练习练习 求下列三角函数值求下列三角函数值319tan)431tan( 31336tan6tan)26tan()611tan((2)117119cossintan363练习:求值117119cossintan363解:cos4sin12tan 6363cossintan3631131322 1. 内容总结:内容总结: 三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业四新教育培训课件
- 农村线路简单改造方案
- 霹雳贝贝考试题及答案
- 站层级建设方案模板
- 出租车行业安全管理与责任合同
- 2026版《全品高考》选考复习方案生物802 第23讲 第1课时 神经调节的结构基础和基本方式 含答案
- 超市调料干货定价方案
- 急重症患儿的护理
- 投标文件产品供货方案
- 农村吊桥改造方案
- 陕西省专业技术人员继续教育2025公需课《专业技术人员综合素质拓展》4学时题库及答案
- 四川成都市成华区2025年物理八下期末监测试题含解析
- 划线及交通设施工程施工方案
- 新入职护士培训考试试题及答案
- 《消防安全技术实务》课本完整版
- 北师大版七年级数学下册 与信息技术相融合的数学教学案例 教案
- 钝针穿刺法临床应用护理
- 水产养殖行业报告
- 锅炉MFT供电回路的分析
- 公共基础知识辅导课件
- 400T医院污水处理方案
评论
0/150
提交评论