




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四章 四边形性质探索一、选择题1. 用两块完全重合的等腰直角三角形纸片拼下列图形:平行四边形(不包括菱形,正方形)矩形(不是正方形) 正方形 等边三角形 等腰直角三角形,一定能拼成的图形是( )A. B. C. D. 2. 用两块完全相同的直角三角形拼下列图形:平行四边形 矩形 菱形 正方形 等腰三角形 等边三角形,一定能拼成的图形是( )A. B. C. D. 3. 用长为100cm的金属丝制成一个矩形框子,框子的面积不可能是( )A. 325cm B. 500cm C. 625cm D. 800cm4.剪掉多边形的一个角,则所成的新多边形的内角和( )A. 减少180° B.
2、增加180° C. 减少所剪掉的角的度数 D. 增加180°或减少180°或不变5. 如图,BDC是将矩形纸片ABCD沿对角线BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( ) A. 2对 B. 3对 C. 4对 D. 5对6. 2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的勾股圆方图,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图)。如果大正方形的面积是13,小正方形的面积是1,直角三角形较短直角边为a,较长直角边为b,那么( a+b)2的值为( )A. 13 B.19 C.25 D.1697. 如图,平行四
3、边形ABCD中,A的平分线AE交CD于E,AB=5,BC=3,则EC的长( )A. 1 B. 1.5 C. 2 D. 38. 一个多边形的内角和为540°,则其对角线的条数是( )A. 3条 B. 5条 C. 6条 D. 12条9. 一个多边形每一个顶点取一个外角,这些外角中钝角最多的个数是( )A. 1个 B. 2个 C. 3个 D. 4个10. 国旗上每个五角星( )A.是中心对称图形而不是轴对称图形; B.是轴对称图形而不是中心对称图形;C.即是中心对称图形又是轴对称图形; D.即不是中心对称图形又不是轴对称图形11. 等腰梯形的两底之差等于腰长,则腰与下底的夹角为( )A.
4、120° B. 60° C. 45° D. 135°12. 当一个多边形的边数增加1时,它的外角和增加( )A. 180° B. 0° C. n·180° D. 360°13. 两个多边形的边数之比为2:1,内角之比为8:3,则她们的边数之和为( ) A. 15 B. 12 C. 21 D. 18二、填空题1. 依次连接等腰梯形的各边中点所成的四边形是_。2. 如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为_ 。3. 如图,延长正方形ABCD的一边AB到点E,使BE=AC,则E=
5、_。4. 如图,在同一平面内有相同的正方形ABCD和ABCD,A与正方形ABCD的中心重合,且正方形ABCD绕A转动,则它们重叠部分的面积与正方形ABCD的面积之比是_ 。5. 如图,正方形CDEF旋转后能与正方形ABCD重合,那么图形所在平面上可以作为旋转中心的点共有_个,分别是 。6. 写出两个大于5小于6的无理数_ 。7. 如图,矩形ABCD中,AB=2BC, E为DC上的点,且AE=AB,则EBC=_度。 5题图 7题图 8. 从n边形(n3)的一个顶点出发可以画_ 条对角线,这些对角线把n边形分成_ 个三角形。9. 如果一个多边形的内角等于它的外角和的5倍,那么这个多边形是_边形。1
6、0. 若E是正方形ABCD对角线AC上的一点,且AE=AB,则ABE=_。三 、解答题1. 如图,已知菱形的两条对角线长为a、b,你能将将菱形分割成矩形吗?画图说明,在此过程中,你能发现菱形的面积与a 、b的关系吗?(写出发现过程)。2. 任意剪一个梯形纸片,利用对折的方法找到腰的中点E、F,按图中所示方法分别将含A、B的部分向里剪下,并按图中箭头所示的方向旋转180°。(1)你能得到一个怎样的四边形?(2)你能发现关于线段EF的哪些特性?(3)请你画出一条直线,将梯形ABCD分成面积相等的两部分(保留作图痕迹),这样的直线你能画出几条?简要说明你的理由。3. 某村有一呈四边形的池塘
7、,在它的四个角A、B、C、D处均有一棵大树,现在该村打算将池塘的面积扩大一倍,又想保持大树不动,并要建成后的池塘成平行四边形,该村能否实现这个设想?若能,请你设计并画图;若不能,说明理由。 4. 如图,有两个正方形ABCD与OPQS,OPQS的顶点O是正方形ABCD的对角线的交点,若正方形OPQS绕着O任意旋转。(1)当两个正方形的边长相等时,AP与BS的大小有何关系?(2)若两个正方形的边长不等,正方形ABCD的边长为a,正方形OPQS的边长为b,且ab,上述结论是否仍然成立?5. 如图,等腰梯形ABCD中,ADBC,AB=CD,AD=10cm,BC=30cm,动点P从点A 开始沿AD边向点
8、D以每秒1cm的速度运动,同时动点Q从C开始沿CB边向点B以每秒3cm的速度运动,当其中一点到达端点时,另一点也随之停止运动。设运动时间为ts。(1)t为何值时,四边形ABQP是平行四边形?(2)四边形ABQP能成为等腰梯形吗?如果能,求出t的值;如果不能,请说明理由。 6. 如图,梯形ABCD中,ADBC,B=60°,C=30°,AD=2,BC=8,求梯形两腰AB、CD的长。7. 一个多边形除去一个内角后,其余的(n-1)个内角的和是1993°,那么:(1)除去的那个内角是多少度?(2)这个多边形是几边形?8. 如图,平行四边形ABCD中,以对角线AC为斜边作R
9、tACE,又BED=90°,那么平行四边形ABCD是矩形吗?说说你的理由。 9. 如图,在梯形ABCD中,ADBC,B=80°,C=50°,AD=2,BC=5,求腰AB的长。 10. 如图,四边形ABCD中,AB=BC=6cm,A=120°,B=60°,C=150°,求AD的长。11. 如图,在矩形ABCD中,EFCE,EF=CE,DE=2cm,矩形的周长为16cm,求AE的长。 12. 如图,已知梯形ABCD中,ABCD,AD=BC,延长AB到E,使BE=DC,则AC=CE吗?为什么?13. 如图,已知等腰梯形ABCD中,ABCD,
10、A=60°,DB平分ABC,且梯形周长为30cm,求梯形ABCD的面积。 14. 如图,已知等腰梯形ABCD中,AD=AB,BC=BD,求梯形各角的度数。 15. 如图,已知直角梯形ABCD中,ADBC,BAD=90°,BEDC与E,DC=BC你认为AB与BE相等吗?说明你的理由。 16. 如图,E是矩形ABCD边AD上的一点,且BE=ED,P是对角线BD上任意一点,PFBE于F,PGAD与G,请你猜想PF、PG、AB它们之间有什么关系?并证明你的结论。答案:一、选择题1. B 2. D 3. D 4. B 5. B 6. C 7. C 8. B 9. C 10. B 11
11、. B 12. B 13. A提示:3. 当矩形为正方形时面积最大为:。7. 过点E作AD的平行线EG,交AB于点G,则AGED为菱形。9. 因多边形的外角和为360°,所以钝角最多为3个。二、填空题1. 菱形 2. 2 3. 22.5° 4. 1:4 5. 3,点C、D和CD边的中点。6. 7. 75° 8. 9. 1210. 67.5° 提示:3. 连接BD,BDE为等腰三角形。4. 旋转使点D与D重合,阴影部分的面积=SDAC=S正方形6. x。7. 利用在Rt中,30°角所对的边=斜边的一半。三、解答题1. 可以。S菱形=2.(1)矩形
12、 (2)中位线EF= (3)找出EF的中点N,能画无数条。3. (略)4. (1)AP=BS。证明略。(2)上述结论仍成立。连接BS,在OAP、OBS中, 5.(1)当四边形ABQP为平行四边形时,只要AP=BQ(已知APBQ)即可。 AP=t×1,BQ=BCCQ=303t(s) (2)能成为等腰梯形。只要满足PD=CQ(此时PDQC)则可。 PD=10t,CQ=3t(s)6. 过点A、D分别作AM1BC于M1,DM2BC于M2,(利用“在RtABC中,30°角所对的边=斜边的一半。”)7. 多边形的内角和一定是180°的整数倍,而11×180°1993°12×180°,所以多边形为12边形,除去的角是:12×180°1993°=167°。8. 是矩形。连结OE,O为直角三角形AEC、BED的斜边的中点,所以OA=OE=OC=OD。9. AB=3。过D作DMAB(点M为DM与BC的交点),三角形MDC中,MD=MC=5-2。10. AD=12。过点C作CMAB(点M为CM与AD的交点),在三角形CMD中, CM=MD。11. AE=3。EAFCDE,设AE=CD=x,则2×(x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗大数据挖掘技术发展趋势分析
- 2025年线上教学阶段性工作总结模版
- 3固定合同范例
- 读陋室铭学生读后心得体会模版
- 上海家装室内设计合同范例
- 2024年氧化锆纤维隔膜布项目资金筹措计划书代可行性研究报告
- 医疗领域下的区块链与专利保护研究
- 上海网约车买车合同范例
- 医疗器械租赁行业的市场前景与挑战
- 仓库吊装合同样本
- 马家河金矿选矿试验报告
- “新时代好少年”推荐表
- 园林绿化工程监理实施细则(完整版)
- 规章制度文件评审表
- 草坪学实习报告模板-Copy
- K-H-V行星齿轮减速器 瞿鸿鹏
- 事业单位节能减排工作实施方案
- 住宅楼消防工程施工组织设计方案(DOC39页)
- 欧科变频器说明书文档
- 2-1春风带我去散步
- 郑州印象城市介绍旅游推介专题讲授PPT课件
评论
0/150
提交评论