第二章坐标变换_第1页
第二章坐标变换_第2页
第二章坐标变换_第3页
第二章坐标变换_第4页
第二章坐标变换_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、APxAyzpPpp,xyzp p p(cylindrical)(cylindrical) spherical)spherical) ,BBBxyz ABRcos(,)cos(,)cos(,)cos(,)cos(,)cos(,)cos(,)cos(,)cos(,BABABAAAAABBBBBABABABABABABABABABABABABABABAxxyxzxRxyzxyyyzyxzyzzzxxyxzxxyyyzyxzyzzz111213212223313233)rrrrrrrrr100( , )0cossin0sincosR xcos0sin( , )010sin0cosR ycossin0

2、( , )sincos0001R zPABzz、AxByABzzPP、BxPAxPByPBxAyAyPAPBPcossinsincosABBxxyABByxyABzzppppppppcs0sc0001ABxxAByyABzzpppppp( , )AABBPR zP1,1AATABBBRRR10AAABBBAAAAAABBBBBBxyzxyyzzx AXAYAZ 00100( , )0010000100ABXYZcscsRsccsscscc cc s cs cc s cs ss cs s sc cs s cc ssc sc c ,scsin,cosBZBYBX BBBB ( )( )( )001

3、000010000100AABBBZ Y XBBBZYXRR R RRRRcscssccsscscc cc s cs cc s cs ss cs s sc cs s cc ssc sc c AK (, )ABR K( )KRAK1 cosv ,ATxyzKk kk111213212223313233( )xxxyzxzyABKxyzyyyzxxzyyzxzzk k vck k vk sk k vk sRk k vk sk k vck k vk sk k vk sk k vk sk k vcrrrrrrrrr Example: A Frame B is described as initiall

4、y coincident with A, then be rotated about the vector (passing through the origin) by degrees. Give the frame description of B. The frame description of B is: 300.707,0.70,0ATK 0.9330.0670.3540.0670.9330.3540.3540.3540.866xxxyzxzyABxyzyyyzxxzyyzxzzk k vck k vk sk k vk sRk k vk sk k vck k vk sk k vk

5、sk k vk sk k vc ,AABBORGBRPBARABORGPABORGPABORGPBPAPABABORGPPPABORGPABORGPAPBPAABBPR PABRBAR1AAATBBBRRRABR Example: Frame B is rotated relative to frame A about Z by 30 degrees. Here Z is pointing out of the page. Writing the rotation matrix, we obtain: Given We calculate The original vector P is no

6、t changed in space, we compute a new description of the vector relative to another frame.cossin00.8660.5000.000sincos00.5000.8660.0000010.0000.0001.000ABR0.02.00.0BP1.0001.7320.000AABBPR P Example: Consider two rotations, one about Z by 30 degrees and one about X by 30 degrees: The fact that the ord

7、er of rotations is important should not be surprising; furthermore, it is captured in the fact that we use matrices to represent rotations, because multiplication of matrices is not commutative in general.0.8660.5000.000(30.0)0.5000.8660.0000.0000.0001.000ZR1.0000.0000.000(30.0)0.0000.8660.5000.0000

8、.5000.866XR0.870.430.250.870.500.00(30.0)(30.0)0.500.750.43(30.0)(30.0)0.430.750.50.000.500.870.250.430.87ZXXZRRRRAPAABABBORGPR PPBPAPABRABORGP5,9,0TBP=000012cos30sin3000.8660.5000.0006,sin30cos3000.5000.8660.00000010.0000.0001.000AABORGBPR轾轾轾-犏犏犏犏犏犏=犏犏犏犏犏犏犏臌臌臌0.8660.5000.000 51211.0980.5000.8660.00

9、0 9613.5620.0000.0001.000 000AABABBORGPR PP轾轾轾轾-犏犏犏犏犏犏犏犏=+=+=犏犏犏犏犏犏犏犏臌臌臌臌BBCBCCORGPR PP()AABAABCBABBORGBCCORGBORGPR PPRR PPPBPAPBPAABBPT P100011AAABBBPRPP3 30010101AAAABBORGBORGBRPIPR_1000100010001OOOABxAByABABzPPTP0000Rot( , )00100001ABcsscTz000100Rot( , )000001ABcsTysc100000Rot( , )000001ABcsTxscB

10、BCCPT PAABABCBBCPT PT T P01ABABAAABBCBCORGBORGCBCR RR PPTT T()AABAABCBABBORGBCCORGBORGPR PPRR PPP(4, 3,7)( ,90)( ,90)1004001001000014010301001000100300171000001001070001000100010001ABTTransRot yRot z0014761003340107210000111AABBPT P ( ,90)(4, 3,7)( ,90)0010100401000017010001031000100310000017001001040001000100010001ABTRot yTransRot z001779100334010421000111AABBPT P BCORGP1BAATABBRRRBBAAT AAORGABORGBBORGPR PRP 01ATAT ABBBBORGARRPTAZAXAY0.8660.5000.0004.00.5000.8660.0003.00.0000.0001.0000.00001ABT0.8660.5000.0004.9640.5000.8660.0000.5980.0000.0001.0000.00 0 010001ATAT ABBBBORGARRPTUUAUUB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论