立体几何中的向量方法3收藏PPT课件_第1页
立体几何中的向量方法3收藏PPT课件_第2页
立体几何中的向量方法3收藏PPT课件_第3页
立体几何中的向量方法3收藏PPT课件_第4页
立体几何中的向量方法3收藏PPT课件_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1第1页/共19页2F1 1F3 3F2 2F1 1F2 2F3 3ACBO500kgF1 1F3 3F2 2第2页/共19页空间“角度”问题第3页/共19页A平面的法向量:如果表示向量 的有向线段所在直线垂直于平面 ,则称这个向量垂直于平面 ,记作 ,如果 ,那 么 向 量 叫做平面 的法向量. n n n n 给定一点A和一个向量 ,那么过点A,以向量 为法向量的平面是完全确定的.n n 几点注意:1.法向量一定是非零向量;2.一个平面的所有法向量都互相平行;3.向量 是平面的法向量,向量 是与平面平行或在平面内,则有0n m n m n l第4页/共19页问题:如何求平面的法向量?),(

2、) 1 (zyxn 设出平面的法向量为),(),()2(222111cbabcbaa向量的坐标两个不共线的找出(求出)平面内的00,) 3(bnanzyx方程组的关于根据法向量的定义建立个解,即得法向量。解方程组,取其中的一)4(第5页/共19页(2,2,1),(4,5,3),ABACABC 例2:已知求平面的 单位法向量。nxyz解:设平面的法向量为( , , ),(2,2,1)0(4,5,3)0,nAB nACxyzxyz 则,( , , ),( , , )220,4530 xyzxyz即1121xzy 取,得1( , 1,1),2n3|2n 12 2 (-33 3ABC求平面的单位法向量

3、为, ,)1第6页/共19页1.异面直线所成角设直线设直线, l m的方向向量分别为的方向向量分别为, a b lamlamb 若两直线 所成的角为 , 则, l m(0)2cosa ba b 复习引入第7页/共19页方向向量法 将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。如图(2),设二面角 的大小为其中AB lCDlCDABl,CDABCDABCDAB,coscosDCLBA2、二面角第8页/共19页注意法向量的方向:同进同出,二面角等于法向量夹角的补角;一进一出,二面角等于法向量夹角Lnm 将二面角转化为二面角的两个面的法向量的夹角。如图,向量 ,则

4、二面角 的大小 mn,lnm,nm, 2、二面角若二面角 的大小为 , 则l (0)cos.u vu v 法向量法第9页/共19页3. 线面角 ua ula 设直线l的方向向量为 ,平面 的法向量为 ,且直线 与平面 所成的角为 ,则 ( )a u l02 sina ua u 第10页/共19页11A1AB1BC1C1D1Fxyz所以:解:以点C为坐标原点建立空间直角坐标系 如图所示,设 则 11CC (1,0,0), (0,1,0),ABCxyzC) 1 ,21,21(),1 , 0 ,21(11DF) 1 ,21,21(,) 1 , 0 ,21(11DBFA10302345| 141|11

5、11DBFADBFA11cos,AF BD |所以所以 与与 所成角的余弦值为所成角的余弦值为1BD1AF1030第11页/共19页 反思:此题典型的说明了向量法与几何法各有什么优劣。结合前面几节课的内容。 几何法:缺点:几何法复杂难懂,需要空间想象能力超强。几何法思维的发生发展难,几何法技巧性高个性强,很不容易想到。 优点:几何法证出来了我们就知道为什么能证出来,几何法能看清几何体的结构本质。几何法是垂直我们就知道为什么垂直,因为有图形为证。也因为几何法我们是通过视觉,向量法却是大脑的抽象思维。 向量法:优点:向量法简单明了没几步。此题可看出向量法的威力和优越。向量法是证出来了也不知道为什么

6、能证出来。向量法表面上是代数运算实际上是几何运算,几何运算被隐藏起来了。向量法证明是空荡荡的,找不到一个坚实的支撑点。向量法看不清楚。 结合前几节课的题可看出向量法是只披着羊皮的狼。向量法求解与证明可以有统一的模式,几何法却是技巧性高个性强。 缺点:运算量很大。第12页/共19页13ABCDS解: 建立空直角坐系A-xyz如所示,),0 ,21, 0(DA( 0, 0, 0) ,C ( -1, 1, 0) ,(0,0,1)S) 1,21, 0(),0 ,21, 1 (DSDC),0 ,21, 0(1DAnSBA的法向量易知,面2( , , ),SCDnx y z 的法向量22,nCD nSD

7、由得:设平面0202zyyx) 1 , 2 , 1 (2n解得:,36|,cos212121nnnnnn。是即所求二面角的余弦值36xyz第13页/共19页 反思:此题典型的说明了向量法与几何法各有什么优劣。结合前面几节课的内容。 几何法:缺点:几何法复杂难懂,需要空间想象能力超强。几何法思维的发生发展难,几何法技巧性高个性强,很不容易想到。 优点:几何法证出来了我们就知道为什么能证出来,几何法能看清几何体的结构本质。几何法是垂直我们就知道为什么垂直,因为有图形为证。也因为几何法我们是通过视觉,向量法却是大脑的抽象思维。 向量法:优点:向量法简单明了没几步。此题可看出向量法的威力和优越。向量法

8、是证出来了也不知道为什么能证出来。向量法表面上是代数运算实际上是几何运算,几何运算被隐藏起来了。向量法证明是空荡荡的,找不到一个坚实的支撑点。向量法看不清楚。 结合前几节课的题可看出向量法是只披着羊皮的狼。向量法求解与证明可以有统一的模式,几何法却是技巧性高个性强。 缺点:运算量很大。第14页/共19页ABCD1A1B1C1DMxyzBCD1A1B1C1DMN|sin|nADnAD解:如图建立坐标系A-xyz,则(0,0,0),A)6 , 2 , 6(M可得由, 51NA)3 , 4 , 0(N).3 , 4 , 0(),6 , 2 , 6(NAMA由的法向量设平面),(zyxn 00nNAn

9、MA0340626zyzyx即在长方体 中,ADANM求与平面所成的角的正弦值.例1:1111ABCDABC D1112,MBCB M 为上的一点,且1NAD点 在线段上,15,AN , 61AA, 8, 6ADAB第15页/共19页ABCD1A1B1C1DMNxyzBCD1A1B1C1DMN)34, 1 , 1 (n得,34343)34(118|0810|222(0,8,0),AD 又ADANM与平面所成角的正弦值是34343|sin|nDAnDA在长方体 中,ADANM求与平面所成的角的正弦值.例1:1111ABCDABC D1112,MBCB M 为上的一点,且1NAD点 在线段上,15

10、,AN , 61AA, 8, 6ADAB第16页/共19页 反思:此题典型的说明了向量法与几何法各有什么优劣。结合前面几节课的内容。 几何法:缺点:几何法复杂难懂,需要空间想象能力超强。几何法思维的发生发展难,几何法技巧性高个性强,很不容易想到。 优点:几何法证出来了我们就知道为什么能证出来,几何法能看清几何体的结构本质。几何法是垂直我们就知道为什么垂直,因为有图形为证。也因为几何法我们是通过视觉,向量法却是大脑的抽象思维。 向量法:优点:向量法简单明了没几步。此题可看出向量法的威力和优越。向量法是证出来了也不知道为什么能证出来。向量法表面上是代数运算实际上是几何运算,几何运算被隐藏起来了。向量法证明是空荡荡的,找不到一个坚实的支撑点。向量法看不清楚。 结合前几节课的题可看出向量法是只披着羊皮的狼。向量法求解与证明可以有统一的模式,几何法却是技巧性高个性强。 缺点:运算量很大。第17页/共19页用空间向量解决立体几何问题的“三步曲”。 (1)建立立体图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论