版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等腰三角形与等边三角形的性质与判定学生姓名年级学科数学授课教师日期时段核心内容等腰三角形及等边三角形的性质与判定,“等边对等角”与“等角对等边”的综合运用,30的直角三角形的性质。课型一对一教学目标1. 了解等腰三角形的概念;理解等腰三角形的性质,能运用性质解决相关问题;2. 能够运用两个角相等或轴对称的性质等判断三角形是等腰三角形;3. 理解等边三角形的性质,能运用性质解决问题;会判定一个三角形是等边三角形;4. 掌握有一个角是30的直角三角形的性质。重、难点理解等腰三角形与等边三角形的性质,并利用性质解决问题;会判定一个三角形是等腰三角形或等边三角形;等腰三角形与等边三角形性质与判定综合运
2、用。课首沟通上讲回顾(错题管理);作业检查;询问学生学习进度等。知识导图课首小测1、(2014萝岗区期末)如果等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或122、(2014番禺区期末)下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.等腰三角形的两个底角相等C.等腰三角形一边不可以是另一边的二倍D.顶角相等的两个等腰三角形全等3、(2014白云区期末)在ABC中,A=42°,B=96°,则它是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形4、如图,ABC中,AB=AD=DC,BAD=40°
3、;,则C= .5、(2014天河区期末)如图,在ABC中,B=30°,ED垂直平分EC,垂足为D,ED=3,则CE的长为。知识梳理一、等腰三角形1. 定义的叫做等腰三角形相等的两条边叫做,另一条边叫做。两腰所夹的角叫做,腰与底边的夹角叫做。2. 性质性质1:等腰三角形的两个底角。(简写成“”)。性质2:等腰三角形的、相互重合(简称“”)性质3:等腰三角形是轴对称图形,只有一条对称轴,即为。3.判定(1)有两条边的三角形是等腰三角形。(2)如果三角形的两个角相等,那么这两个角所对的边也相等(简写成“ ”)二、等边三角形1. 定义都相等的三角形是等边三角形2. 性质性质1:等边三角形的三
4、个内角都,并且每一个角都等于;性质2:等边三角形是,并且有对称轴,分别为三边的垂直平分线。3.判定(1)三个角都的三角形是等边三角形;(2)都相等的三角形是等边三角形;(3)有一个角是60的是等边三角形。三、含30的直角三角形的性质在直角三角形中,如果有一个锐角等于30°,那么它对的等于的一半.导学一:等腰三角形的性质知识点讲解1: “等边对等角”例题1、(2014华美英语实验期中)等腰三角形的其中一个角为50°,则它的顶角是_度.2、(2014四川南充)如图,在ABC中,ABAC,且D为BC上一点,CDAD,ABBD,则B的度数为()A. 30° B36
5、6; C40° D45°3、如图,在等腰三角形ABC中,AB=AC,BD=CE,BE=CF。(1)求证:EBDPCE(2)若A=40°,求DEF的度数。我爱展示1、(2012甘肃白银中考)如图,在ABC中,AC=BC,ABC的外角ACE=100°,则A=_度2、(2013白云区华附新世界期中)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为() A.60° B.120° C.60°或150° D.60°或120° 3、如图所示,在ABC中,ABC120°,点D、E分
6、别在AC和AB上,且AEEDDBBC,则A的度数为_°.知识点讲解2: “三线合一”例题1、(2014浙江丽水中考)如图,在ABC中,AB=AC,ADBC于点D,若AB=6,CD=4,则ABC的周长是2、已知:如图,ABC中,ABAC,D、E在BC边上,且ADAE求证:BDCE我爱展示如图所示,在等腰ABC中,AD是BC边上的中线,点E在AD上。求证:BE=CE。知识点讲解3:等腰三角形的边的计算例题1、已知等腰三角形一腰上的中线将它们的周长分为9和12两部分,求腰长和底长2、已知等腰三角形的周长为12,腰长为,求的取值范围我爱展示1、 已知等腰三角形一腰上的中线将它们的周长分为12
7、和15两部分,求腰长和底长2、( 2014广西玉林市)在等腰ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A1cmAB4cm B5cmAB10cm C4cmAB8cm D4cmAB10cm导学二:等腰三角形的判定与等腰三角形的综合运用知识点讲解1:等腰三角形的判定例题1、如图,ABC中,BA=BC,点D是AB延长线上一点,DFAC于F交BC于E,求证:DBE是等腰三角形。2、 已知:如图,在ABC中,CE是角平分线,EGBC,交AC边于F,交ACB的外角(ACD)的平分线于G,探究线段EF与FG的数量关系并证明你的结论3、(2013育才实验)在平面直角坐标系中,已知点O是坐标
8、原点,点A为(2, 2),若在坐标轴上有一动点P,使AOP是等腰三角形,这样的P点共有()A. 2个 B. 4个 C. 6个 D. 8个我爱展示1、已知:如图,ABC中,ABAC,E在CA的延长线上,EDBC求证:AEAF.2、如图所示在ABC中,BO平分ABC, CO平分ACB ,MNBC ,MN经过点O,若AB=16 ,AC=23,那么AMN的周长为多少?3、(2013天河七十五中)如图,在ABC中,ACB=90°,BAC=30°,在直线BC或AC上取一点P,使得PAB等腰三角形,则符合条件的点P共有个知识点讲解2:等腰三角形的判定与性质综合运用例题1、已知:如图,AD
9、是BAC的平分线,BEAC,EFAD于F.求证:EF平分AEB2、(2013二中应元期末)已知:如图ABC中,A=90o,AB=AC,D为BC的中点,E、F分别是AB、AC上的点,且BE=BF,求证:DEF为等腰直角三角形。A F EB D C我爱展示1、已知:如图所示,ABC中,ABAC,D是AB上一点,延长CA至E,使AEAD试确定ED与BC的位置关系,并证明你的结论2、如图,在等腰RtABC中,ACB=90°,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF(1)证明:BDF是等腰直角三角形(2)猜想线段AD与CF之间的关系并证明导学三:等腰三
10、角形的综合运用(选学,成绩好的学生用)例题1、 如图,已知B=2C,CAD=BAD,求证:AC=AB+BD2、如图所示,在ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。3、如图,已知在ABC中,ABC3C,12,BEAE,求证:AC-AB = 2BE。我爱展示1、已知,如图,是等腰直角三角形的斜边,是的平分线求证:2、已知在ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE。导学四:等边三角形的性质与判定知识点讲解1:等边三角形的性质例题1、已知:如图,ABC和BDE都是等边三角
11、形(1)求证:ADCE;(2)当ACCE时,判断并证明AB与BE的数量关系2、如图所示,已知和均为等边三角形,求证:BD+CD=AD.我爱展示1、(2013浙江台州中学期末)如图,在如图,在等边中,点分别在边上,与交于点(1)求证:;(2)求的度数2、如图,已知点B、C、D在同一条直线上,ABC和CDE都是等边三角形BE交AC于F,AD交CE于H, 求证:BCEACD; 知识点讲解2:等边三角形的判定例题1、等边ABC中,点P在ABC内,点Q在ABC外,且ABP=ACQ,BP=CQ,问APQ是什么形状的三角形?并证明你的结论.导学五:含30的直角三角形的性质知识点讲解1:含
12、30的直角三角形的性质例题1、(2013华侨外国语)已知,如图ABC中,AB=AC,C=30o,ABAD,AD=4cm,求BC的长。B D CA2、(2013珠江六中期中)如图:已知:等边三角形ABC,点D是AB的中点,过点D作DFAC,垂足为F,过点F作FEBC,垂足为E ,若三角形ABC的边长为4。求:(1)线段AF的长度;(2)线段BE的长度.我爱展示1、(2012广东梅州中考)如图,AOE=BOE=15°,EFOB,ECOB,若EC=1,则EF=_2、如图,四边形ABCD中,ADBC,ABD=30o,AB=AD, DCBC于点C,若BD=4,求CD的长.3、如图,在中,垂足为
13、,求的值限时考场模拟(15分钟)1、下列三角形:有两个角等于60°;有一个角等于60°的等腰三角形;三个外角(每一个顶点处各取一个外角)都相等的三角形;一腰上的中线也是这条腰上的高的等腰三角形。其中是等边三角形的有。2、(2015江苏江阴长泾片期中)如图,在ABC中,ABAC,AB的垂直平分线交AC点E,垂足为点D,连接BE,若BEBC,则EBC的度数为.ABCDE3、(2014萝岗区期末)如图,等腰三角形ABC中,AB=AC=12,ABC=30°,那么底边上的高AD=_。4、(2014白云区华附新世界期中)一个等腰三角形的一边长为6cm,周长为20cm,求其他两
14、边的长。5、如图,在ABC中,点D在BC上,并且AB=AC=BD,AD=CD,求C的度数。6、(2014白云石井片区期中)如图,已知在ABC中,AB=AC,D为BC边的中点,过点D作DEAB,DFAC,垂足分别为E、F。(1)求证:DE=DF;(2)若A=60°,BE=1,求ABC的周长。7、如图,在ABC中,D、E分别是AC和AB上的一点,BD与CE交于点O,给出下列四个条件:;。(1)上述四个条件中,哪两个条件可以判定是等腰三角形(用序号写出所有的情形);(2)选择(1)小题中的一种情形,证明ABC是等腰三角形。8、(2014海珠区期中)在等边ABC中,点E在边AB上,点D在CB的延长线上,且ED=EC,(1) 当点E为AB的中点时,如图1,证明DB=AE(2) 当点E在AB上运动时,如图2,猜想(1)中的结论是否还成立?证明你的猜想课后作业一、解答题1、已知:如图,在ABC中,AB =BC,ABCF为AB延长线上一点,点E在BC上,BE = BF,连接AE、EF和CF(1)求证:;(2)若=,求的度数2、(2014白云区华附新世界期中)在ABC中,AB=AC,BC=BD=ED=EA求3、如图,在等边ABC中,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡村旅游农产品直销服务规范考核试卷
- 2025年环保科技行业可再生能源与废物处理技术研究报告及未来发展趋势预测
- 2025年制造业工业互联网供应链协同在离散制造中应用资格考核试卷
- 2025年行业应用资格行政诉讼法考核试卷
- 2025年化工材料行业生态化学与新材料研究报告及未来发展趋势预测
- 2025年农业行业绿色冷库节能技术农产品冷链物流考核试卷
- 2025年乌鲁木齐市招聘警务辅助人员(600人)笔试考试参考试题及答案解析
- 2026贵州黔南州瓮安县引进公费师范及“优师计划”毕业生招聘教师10人笔试考试备考试题及答案解析
- 2025江西南昌汉代海昏侯国遗址管理局招聘国有企业正职背景调查考试笔试备考题库及答案解析
- 2025山东德德州天衢建设发展集团有限公司招聘工作人员20人笔试考试参考题库及答案解析
- 粮油公司产品介绍
- 酒店婚宴设计方案
- 2025自贡开放大学公需科目答案
- 药物外渗的应急预案流程
- 先天性肺气道畸形护理查房
- 基于舞弊三角理论的上市公司财务舞弊研究-以金正大为例
- 超星尔雅学习通《创新创业(同济大学)》2025章节测试附答案
- 2025年标准风电吊装安全员考试题库及答案
- 超声检查的用途与临床应用
- 学科融合视角下的心理健康教育创新实践
- 冀南遗韵:隆尧秧歌的历史、现状与传承发展研究
评论
0/150
提交评论