




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§1.2.1几个常见函数的导数【学情分析】:本节重要是介绍求导数的方法.根据导数定义求导数是最基本的方法.但是,由于最终总会归结为求极限,而本章并没有介绍极限知识,因此,教科书只是采用这种方法计算这五个常见函数的导数.学生只要会用导数公式和求简单函数的导数即可.【教学目标】:(1)用导数定义,求函数的导数.(2)能用基本初等函数的导数公式和导数运算法则求简单函数的导数.(3)理解变化率的概念,解决一些物理上的简单问题,培养学生的应用意识.【教学重点】:能用导数定义,求函数的导数.【教学难点】:能用基本初等函数的导数公式和导数加减运算法则求简单函数的导数.【教学过程设计】:教学环节教学
2、活动设计意图一、复习引入1、导数概念及其几何意义;2、求函数的导数的方法是:(1)求函数的改变量(2)求平均变化率(3)取极限,得导数 为课题引入作铺垫.二、讲授新课1函数的导数 根据导数定义,因为所以函数导数表示函数图像(图3.2-1)上每一点处的切线的斜率都为0若表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态2函数的导数因为所以函数导数表示函数图像(图3.2-2)上每一点处的切线的斜率都为1若表示路程关于时间的函数,则可以解释为某物体做瞬时速度为1的匀速运动(以教师计算演示为主,说明根据定义求导数这种方法的具体操作过程.)教师板演形成规范深刻认识函数的
3、内涵,养成用数学知识解释现实问题的习惯.让学生模仿, 根据具体步骤亲自尝试求导过程.3函数的导数因为所以函数导数表示函数图像(图3.2-3)上点处的切线的斜率都为,说明随着的变化,切线的斜率也在变化另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当时,随着的增加,函数减少得越来越慢;当时,随着的增加,函数增加得越来越快若表示路程关于时间的函数,则可以解释为某物体做变速运动,它在时刻的瞬时速度为4函数的导数因为所以函数导数5函数的导数因为所以推广:若,则。说明:请注意公式中的条件是,但根据我们所掌握的知识,只能就的情况加以证明.这个公式称为幂函数的导数公式.事实上可以是任意实数.让学生上黑
4、板演示,教师作出评价,并且引导学生归纳出幂函数的导数公式.三、师生互动,继续探究探究1:在同一平面直角坐标系中,画出函数的图象,并根据导数的定义,求它们的导数.(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数增(减)的快慢与什么有关?教师指导学生分组进行探究性学习,分别展示探究结论,教师给予分析、评价并总结.探究2:画出函数的图象.根据图象,描述它的变化情况,并求出曲线在点处的切线方程.问题逐层深入,为后继学习做个铺垫。培养学生数形结合的能力,并掌握求切线方程的方法四、运用新知,体验成功练习1求下列函数的导数.练习2求三次曲线在点处的
5、切线方程.通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。五、课堂小结(1)求函数的导数的一般方法:求函数的改变量.求平均变化率.取极限,得导数.(2)常见函数的导数公式:; .(12)作业布置:教科书P13探究二(函数变式: ),P18A组1,2,5注:如果环节(8) 中未完成则课后做作业.练习与测试:A基础题.1求下列函数的导数:(1) (2) (3) (4)答案:(1) (2) (3) (4)2已知函数,则( )(A) (B) (C) (D)答案:C3已知函数,则( )(A) (B) (C) (D)答案:D4已知函数的切线的斜率等于,则其切线方程有( )(A)1条 (B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版摄影师职业发展规划聘用合同范本
- 河北省博野县2025年上半年事业单位公开遴选试题含答案分析
- 2025年度高端医疗设备研发及授权使用合同
- 海南省屯昌县2025年上半年公开招聘村务工作者试题含答案分析
- 2025年版店铺转让附带装修权合同范本
- 2025版速记服务保密正本与知识产权保护合同
- 2025年度城乡统筹发展三旧改造合作开发协议
- 2025版体育产业融资合作保密协议
- 2025年度影视作品宣发推广服务合同
- 2025版石材行业产品质量检测服务合同范本
- 2026届广东省六校高三语文上学期第一次联考试卷附答案解析
- 2025年医院胸痛中心应知应会试题(附答案)
- 医院投诉处理标准化培训
- 2025年广东法官入额考试题库
- 肺康复专题讲座
- 卵巢保养课件教学
- 2025年医师定期考核业务水平测评理论考试(公共卫生)历年参考题库含答案详解(5套)
- 2025年发展对象培训考试试题(含答案)
- 测绘工程技术专业介绍
- 亚马逊运营每周工作汇报
- GB/T 9775-2025纸面石膏板
评论
0/150
提交评论