




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 4章 金属半固态加工4.1 概述4.1.1 半固态加工的概念与特点 一、半固态加工的概念传统的金属成形主要分为两类: 一类是金属的液态成形, 如铸造、 液态模锻、 液态轧制、 连铸等;另一类是金属的固态成形,如轧制、拉拔、挤压、锻造、冲压等。在 20 世纪 70 年代美国麻省理工学院的 Flemimgs 教授等提出了一种金属成形的新方法,即半固态加工技 术。金属半固态加工就是在金属凝固过程中, 对其施以剧烈的搅拌作用, 充分破碎树枝状的 初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固液混合浆料(固相组分一般为 50 左右 ),即流变浆料,利用这种流变浆料直接进行成形加工的
2、方法称之为 半固态金属的流变成形 (rheoforming) ;如果将流变浆料凝固成锭,按需要将此金属锭切成一 定大小,然后重新加热 (即坯料的二次加热 )至金属的半固态温度区,这时的金属锭一般称为 半固态金属坯料。利用金属的半固态坯料进行成形加工,这种方法称之为触变成形 (thixoforming) 。半固态金属的上述两种成形方法合称为金属的半固态成形或半固态加工 (semi-solidforming or processing of metals) ,目前在国际上,通常将半固态加工简称为 SSM(semi-solidmetallurgy) 。就金属材料而言, 半固态是其从液态向固态转变或从
3、固态向液态转变的中间阶段, 特别 对于结晶温度区间宽的合金, 半固态阶段较长。 金属材料在液态、 固态和半固态三个阶段均 呈现出明显不同的物理特性, 利用这些特性, 产生了凝固加工、 塑性加工和半固态加工等多 种金属热加工成形方法 1) 。凝固加工利用液态金属的良好流动性,以完成成形过程中的充填、补缩直至凝固结束。 其发展趋势是采用机械压力替代重力充填, 从而改善成形件内部质量和尺寸精度, 但从凝固 机理角度看, 凝固加工要想完全消除成形件内部缺陷是极其困难的, 甚至是不可能的。 塑性 加工利用固态金属在高温下呈现的良好塑性流动性,以完成成形过程中的形变和组织转变。 与凝固加工相比, 采用塑性
4、加工成形的产品质量明显好, 但由于固态金属变形抗力高, 所需 变形力大, 设备也很庞大, 因此要消耗大量能源, 对于复杂零件往往需要多道成形工序才能 完成。 因此,塑性加工的发展方向是降低加工能耗和成本、减小变形阻力、提高成形件尺寸精度和表面与内部质量。 由此出现了精密模锻、 等温锻造和超塑性加工等现代塑性加工方法。半固态加工是利用金属从液态向固态转变或从固态向液态转变(即液固共存 )过程中所具有的特性进行成形的方法。 这一新的成形加工方法综合了凝固加工和塑性加工的长处, 即 加工温度比液态低、 变形抗力比固态小, 可一次大变形量加工成形形状复杂且精度和性能质 量要求较高的零件。所以,国外有的
5、专家将半固态加工称为 21 世纪最有前途的材料成形加 工方法。图 4 1 表示金属在高温下三态成形加工方法的相互关系。二、半固态金属的特点半固态金属 (合金 )的内部特征是固液相混合共存,在晶粒边界存在金属液体,根据固相 分数不同,其状态不同,图 42 表示半固态金属的内部结构图 4-2半固态金属的内部结构(a)半固态(高固相分数);(b)半固态(低固相分数)半固态金属的金属学和力学主要有以下几个特点:(1) 由于固液共存,在两者界面熔化、凝固不断发生,产生活跃的扩散现象。因此溶质 元素的局部浓度不断变化;(2) 由于晶粒间或固相粒子间夹有液相成分,固相粒子间几乎没有结合力,因此,其宏 观流动
6、变形抗力很低;(3) 随着固相分数的降低, 呈现黏性流体特性, 在微小外力作用下即可很容易变形流动;(4) 当固相分数在极限值 (约 75 )以下时,浆料可以进行搅拌,并可很容易混入异种材 料的粉末、纤维等,如图 4-3 所示(5) 由于固相粒子间几乎无结合力, 在特定部位虽然容易分离, 但由于液相成分的存在, 又可很容易地将分离的部位连接形成一体化, 特别是液相成分很活跃, 不仅半固态金属间的 结合,而且与一般固态金属材料也容易形成很好的结合,如图44 所示;(6) 即使是含有陶瓷颗粒、纤维等难加工性材料,也可通过半熔融状态在低加工力下进 行成形加工。(7) 当施加外力时,液相成分和固相成分
7、存在分别流动的情况。虽然施加外力的方法和 当时的边界约束条件可能不同, 但一般来说, 存在液相成分先行流动的倾向或可能性, 如图 4 5 所示。(8) 上述现象在固相分数很高或很低或加工速度特别高的情况下都很难发生,主要是在 中间固相分数范围或低加工速度情况下显著。与普通的加工方法相比,半固态金属加工具有许多独特的优点3 5:(1) 黏度比液态金属高,容易控制:模具夹带的气体少,减少氧化、改善加工性,减少 模具粘接,可进行更高速的部件成形,改善表面光洁度,易实现自动化和形成新加工工艺;(2) 流动应力比固态金属低:半固态浆料具有流变性和触变性,变形抗力非常小,可以 更高的速度成形部件,而且可进
8、行复杂件成形,缩短加工周期,提高材料利用率, 有利于节 能节材,并可进行连续形状的高速成形 (如挤压 ),加工成本低;(3) 应用范围广:凡具有固液两相区的合金均可实现半固态加工。可适用于多种加工工 艺,如铸造、轧制、挤压和锻压等,并可进行材料的复合及成形。4.1.2 半固态加工的基本工艺方法半固态加工的基本工艺方法可分为流变成形 (rheoforming) 和触变成形 (thixoforming) 两 种。如图 46 所示,经加热熔炼的合金原料液体通过机械搅拌、 电磁搅拌或其他复合搅拌, 在结晶凝固过程中形成半固态浆料, 下面的工艺分两种: 其一是将半固态浆料直接压人模具 腔进而压铸成形或对
9、半固态浆料进行直接轧制、 挤压等加工方式成形, 即流变成形; 另一种 是将半固态浆料制成坯料,经过重新加热至半固态温度,形成半固态坯料再进行成形加工, 此即触变成形。图 47 为半固态流变成形和触变成形工艺流程示意图。4.1.3 半固态加工的研究及发展一、国外研究现状20 世纪 70 年代初期,美国麻省理工学院的 M.C.flemings 教授和 SPencer 博士提出了半 固态加工技术, 由于该技采用了非枝晶半固态浆料, 打破了传统的枝晶凝固模式, 具有许多 独特的优点, 因此关于半固态金属成形的理论和技术研究引起了各国研究者的高度重视, 半 固态加工的产品及应用也随之迅速的发展。20 世
10、纪 80 年代后期以来, 半固态加工技术已得到了各国科工作者的普遍承认, 目前已 经针对这种技术开展了许多工艺实验和理论研究。 根据所研究的材料, 可分为有色金属及其 合金的低熔点材料半固态加工和钢铁材料等高熔点黑色金属材料半态加工。(1) 有色金属及其合金的低熔点材料半固态成形研究20 世纪 70 年代以来,美国、日本等国针对铝、镁、铅、铜等的合金进行了研究,其重 点主要放在成形工艺的开发上。目前,国外进入工业应用的半固态金属主要是铝、镁合金,这些合金最成功的应用主要集中在汽车领域, 如半固态模锻铝合金制动总泵体、 挂架、 汽缸头、轮毂、压缩机活塞等。铝合金半固态加工技术 要应用于汽车、电器
11、、航空航天等领域。如美国的 金成形汽车零件生产工厂的生产能力分别达到每年 FiatAuto 公司生产的半固态铝合金汽车零件重达( 触变成形 )已经成熟并进入规模生产,主 Alumax 公司 1997 年的两座半固态铝合 5000 万件。意大利的 StampalSPA 和 7kg ,而且形状很复杂; 意大利的 MM 公司(MagnetiMarelli) 为汽车公司生产半固态铝合金成形的 Fuelin jection Rail 零件,在 2000 年达 到日产7500件。瑞士的Bubler公司已经生产出铝合金半固态触变成形的专用SC型压铸机(实 时压射控制和单一压射缸)和铝 合金半 固态坯料的 专
12、用二次加热设备。日 本的SpedStarWheel 公司已经利用半固态金属成形技术生产铝合金轮毂(重约 5kg)。与铝合金半固态成形比较,镁合金的半固态成形技术发展较晚,目前成熟的技术只有Tnixomolding 技术。 1995 年,美国的 Thixomat 公司的子公司 Lindberg 公司利用Thixomolding 工艺,为一些汽车公司生产了 50 余万件的半固态镁合金铸件。日本的一些公 司利用 Thixomolding 工艺制造移动通讯手机外壳、微型便携式计算机外壳等。但Thixomolding 工艺必须要求提供合适的镁合金屑, 这就使得该技术比较复杂、 生产成本比较 高。近年,英
13、国布鲁诺 (Brunel) 大学研制出低熔点合金双螺旋半固态流变成形机,目前正在 向产业化方向发展13j。另外,最近资料报道,一些发达国家正在开发镁合金半固态连铸坯 料和触变成形技术, 这些情况说明镁合金的半固态成形技术仍然处在不断发展之中, 将会出 现新的技术突破。十几年来,关于半固态加工实验方面的研究主要集中在浆料的制备和材料的成形两方 面,先后开发出了机械搅拌法、单辊旋转法、电磁搅拌法、超声振动法、直流脉冲法等浆料 制备方法以及压铸成形、 模锻成形、 注射成形和连铸成形等材料成形工艺。 理论上的研究主 要是围绕与工艺实现和试样组织、 性能有关方面。 在此研究成果基础上, 近年来又针对浆料
14、 固相分数的控制与测定、 输送、工艺参数如变形抗力、 成形线速度和温度等对试样的表面质 量、内部成分和组织分布规律的影响等较高层次的问题开展了较为系统的理论研究,取得了一定的进展。另外,在纤维和颗粒增强材料、与陶瓷等的复合材料方面也进行了一些研究。 但关于加工过程中凝固模型的建立和理论模拟等方面的高层次研究还并不多见。(2) 高熔点黑色金属的半固态成形研究 到目前为止,国际上共召开了 7 次半固态加工方面的专题国际学术会议,从研究的材 料来看,绝大多数是关于铝合金、镁合金等低熔点材料。如2000 年 9 月底在意大利召开的第 6届半固态加工国际学术会议上, 共发表学术论文 134 篇,但其中关
15、于高熔点钢铁材料半 固态加工的研究论文仅 6篇。所涉及的钢铁材料为 M2 、共析钢、 Hll 钢和不锈钢等。由此 可见钢铁材料半固态加工的有关基础和应用研究任重道远,但一旦取得突破, 其前景将十分光明。但到了 2002年9月在日本筑波召开的第七届半固态加工国际学术会议,研究状况有了 一些新的发展。 在此次学术交流会议上, 共发表论文 148 篇,其中关于高熔点钢铁材料半固 态加工的研究论文 13篇,会议专设了一个钢铁材料半固态加工研讨的分会场。采用半固态 加工方法所研究的高熔点材料涉及D2、HS6 5-2高速工具钢、100Ct6钢、60Si2Mn弹簧钢、AISl304 不锈钢、 C80 工具钢
16、、铸铁等钢铁材料,半固态加工方法涉及触变锻压、挤压、铸 造和直接流变轧制及喷铸成形等等。根据已有的文献和研究结果来看,高熔点黑色金属半固态加工之所以进展缓慢,其中 的重要原因在于以下困难:(1) 选择的材料液固线温度区间较小;(2) 高温半固态浆料难以连续稳定地制备;(3) 熔体的温度、固相的比率和分布难以准确控制;(4) 浆料在高温下输送和保温困难;(5) 成形温度高,工具材料的高温性能难以保证等等。目前研究的重点主要集中在某些钢种的压铸、 锻造等非连续半固态成形加工方面 , 高熔 点黑色金属材料半固态浆料制备方法、成形的研究现状和发展趋势主要表现在两个方面。首先涉及高熔点黑色金属半固态浆料
17、或坯料的制备方法研究。 获得高熔点黑色金属半固 态浆料或坯料的方法主要有:美国麻省理工学院 Flemings 等人发明的机械搅拌法,该方法 利用机械搅拌打碎树枝枝晶使其成为颗粒状粒子; 电磁搅拌方法, 该方法利用交流电磁感应 力使金属浆料产生剧烈的流动, 使金属凝固析出的枝晶充分破碎并球化, 不污染金属液, 金 属浆料纯净,不卷入气体,可以连续生产流变浆料或连铸锭坯,产量可以很大。还有利用应 变激活方法 (SIMA) 、粉末冶金方法和单辊旋转方法尝试制备铸铁、 AISl4340 碳钢、 440C 和 304 不锈钢、 H11、H13 钢、 M2 高速钢旧 31j ,以及 X40 、Ti-20C
18、o 等合金的半固态浆料或 制造出优质的半固态零件毛坯坯料。 但是, 目前关于高熔点黑色金属和合金半固态浆料的交 流感应电磁搅拌基本规律研究未见公开的报道, 所以目前电磁搅拌制备高熔点金属和合金半 固态浆料缺乏重要的理论指导, 应该对电磁搅拌制备黑色金属半固态浆料或坯料的应用基础 和技术进行深入的研究,推动黑色金属半固态成形技术的应用。其次是有关黑色金属半固态成形加工方法研究。 最近几年, 国外有学者尝试利用压铸机 对 Fe-25C-3 1Si 铸铁和 AISl440A 不锈钢的半固态浆料直接进行流变成形,可以获 得初生固相分布均匀的优质成形件L32J,木内等还研究了铸铁的半固态锻造33J。由于
19、黑色金属半固态浆料的保存和阶段式输送较为困难, 其流变成形零件毛坯的进展缓慢。 从黑色金 属半固态成形零件毛坯力学性能实验结果可以看出nj :黑色金属半固态成形零件毛坯的抗拉强度与传统方法成形件的强度相当,成形件的塑性也有提高。Hemin等人曾利用机械搅拌方法制备的半固态Sn-15% Pb浆料连续轧制薄带,他们的研究表明, 金属半固态浆料直接轧制薄带是可行的。 但机械搅拌方法的固有缺点使其不 能用于工业性连续轧制半固态高熔点金属薄带, 最有可能的方法是电磁搅拌, 而电磁搅拌浆 料中的固相分数不可能达到 0.50.7,所以 Flemings 的结果对电磁搅拌高熔点金属半固态连 续轧制薄带的参考价
20、值有限。 近年来, 日本学者尝试了将黑色金属半固态浆料与轧机直接相 接合来连续轧制金属薄带,虽然研究结果没有详细报道,但粗略表明: 薄带的晶粒细小、表面裂纹少、铸造速度加快、模具的热负荷降低;低熔点Cu-Sn 合金的半固态浆料连续轧制薄带比较容易,而熔点高的 SUS310 的半固态浆料连续轧制薄带还有许多基本问题需要研 究。二、国内研究现状我国于 20 世纪 70 年代后期陆续开展了半固态金属成形技术的研究, 但这些尝试大都利 用机械搅拌法进行流变铸造或触变铸造研究。 中科院金属研究所是国内最早开展半固态加工 研究的单位之一,较早进行了“铝合金半固态铸造”等的研究,自行设计制造了“半固态浆 料
21、制备设备”,研究了“半固态组织在凝固过程中析出规律”等等,并研制了“半固态压铸 刹车器活塞毛坯直接连续成形” ,“石墨铝合金复合材料细纱锭盘” 等。 20 世纪 80 年代中期, 我国研究者大多转向半固态制备复合材料和个别通用牌号材料的流变特性的研究,取得了一些成果,如有的研究者利用晶粒细化首先获得细小枝晶的 ZA2 合金锭坯 o)。 20世纪 90年 代以后,一批研究院所和大学在有色金属及其合金等低熔点材料半固态加工和钢铁等高熔点 材料的半固态加工方面开展了较广泛的研究。近几年,我国的研究者在国家自然科学基金、国家“863"、“973”等计划的支持下,已经在铝合金半固态加工技术开发
22、和应用方面具备了较好的基础。对铝合金半固态加工的基本关键技术, 包括半固态材料制备技术、 二次加热技术和半固态压铸技术等方面, 具备了向产 业化转化的技术基础36x。北京科技大学和中科院金属所等单位合作在国家自然科学基金的支持下开展了钢铁材料半固态直接成形基础研究,在铸铁、弹簧钢、 、不锈钢和高碳钢 等高熔点材料的半固态坯料制备、 半固态喷铸成形和直接轧制等方面进行了较深入研究, 并 取得了阶段性成果,北京有色金属研究总院在国家“863”计划和院科研基金的支持下对铝合金半固态加工技术的研究和应用上取得了很大进展, 通过与东风汽车公司合作, 采用半固 态压铸技术在生产现场实现了汽车空压机连杆和空
23、调器涡轮两种汽车零件的批量生产。 近年 来,国内的一些大学在半固态合金的流变和触变行为、 针对铝合金、 镁合金的半固态金属加 工技术、 成形过程的计算机模拟等基础理论研究方面开展了卓有成效的工作。如开发了 “高剪切速率半固态金属浆料制备与直接成形工艺与设备、 “液相线铸造制浆技术” ,并试制了 488 型发动机轴瓦盖、汽车轮毂模拟件等试样。综上所述, 金属半固态加工技术与传统材料成形加工技术相比, 在提高产品质量、 性能、 降低能耗和成本、 缩短生产流程、 利于环境保护以及提高产品市场竞争力等方面具有其独特 的优势, 此技术在汽车、 通讯电器、 机械以及航空航天等工业领域存在着巨大的现实的和潜
24、 在的应用市场, 十分需要从理论基础、 成形加工控制技术以及工艺装备等方面开展系统的研 究开发工作, 以促进这一新技术的理论完善、 技术成熟、 实际应用水平的提高和应用领域的 扩大,其理论和实际意义将十分重大。4.2 半固态金属的组织特性、形成机理与力学行为4.2.1 非枝晶的形成与演化 与常规铸造方法形成的枝晶组织不同, 利用流变铸造方法生产的半固态金属具有独特 的非枝晶、近似球形的显微结构,如图 4-8 所示。所谓流变铸造就是让合金在剧烈搅拌的状 态下凝固。 结晶开始时, 搅拌促进了晶核的产生, 此时晶核是以枝晶生长方式生长的。 随着 温度的下降, 虽然晶粒仍然是以枝晶生长方式生长, 但是
25、由于搅拌的作用, 造成晶粒之间互 相磨损、剪切以及液体对晶粒剧烈冲刷,这样,枝晶臂被打断,形成了更多的细小晶粒,其 自身结构也逐渐向蔷薇形演化。 随着温度的继续下降, 最终使得这种蔷薇形结构演化成更简 单的球形结构, 演化过程如图 所示。球形结构的最终形成要靠足够的冷却速度和足够高的 剪切速率, 同时这是一个不可逆的结构演化过程, 即一旦球形的结构生成了, 只要在液固区, 无论怎样升降合金的温度 (但不能让合金完全熔化 ),它也不会变成枝晶。图 4-9 球形微粒的演化过程示意图液态金属在凝固过程中搅拌且激冷, 其结晶造成固体颗粒的初始形貌呈树枝状, 然后在 剪切力作用下, 枝晶会破碎, 形成小
26、的球形晶。 图 410 给出半固态铸造与常规铸造的组织 比较。国内外不少学者对球形晶粒形成机理及演变过程进行了研究。 研究指出: 半固态浆料搅 动时的组织演变受很多因素影响, 半固态浆料的温度、 固相分数和剪切速率是三个基本因素。 但半固态钢铁材料在搅拌过程中初生晶粒究竟遵循怎样的破碎、转变图 4-10 半固态铸造与常规铸造的组织比较(a) Sn-15Pb 合金的球形晶粒; (b) A1-66Si 合金的常规铸造组织 机制,从目前文献来看,主要有以下几种机理。(1) 枝晶臂根部断裂机制因剪切力的作用使枝晶臂在根部断裂。 最初形成的树枝晶是无位错和切口的理想晶 体,很难依靠沿着自由浮动的枝晶臂的
27、速度梯度方向产生的力来折断。 因此, 必须加强力搅 拌,在剪切力作用下从根部折断。(2) 枝晶臂根部熔断机制晶体在表面积减小的正常长大过程中, 枝晶臂由于受到流体的快速扩散、 温度涨落引起 的热振动及在根部产生应力的作用, 有利于熔断, 同时固相中根部熔质含量较高, 也降低熔 点,促进此机制的作用。此机理示意图如图411 所示。(3) 枝晶臂弯曲机制 此机制认为,位错的产生并累积导致塑性变形。在两相区,位 错间发生攀移并结合成晶界, 当相邻晶粒的倾角超过 200 时,界面能超过固液界面能的两倍, 液相将侵入晶界并迅速渗入,从而使枝晶臂从主干分离。在凝固开始时对液体进行强烈搅拌, 从较大的树枝晶
28、脱离下来的不是球状的枝晶臂。 每 一个枝晶臂结构继续枝状长大。 然而在凝固过程中不断的剪切, 由于长大及与其他晶粒发生 剪切、磨损作用, 枝状晶变成蔷薇状共晶组织, 并在进一步冷却过程中晶粒的蔷薇化继续加 深,直至足够的过冷和高的剪切速度下, 颗粒变成球状。 随着切变速度、凝固量的增加和冷 却速度的降低,晶粒由枝晶形态转变为球形的趋势增加。以上三种假说都有一定的依据, 但附加位错如何发生恢复和再结晶或如何迁移、 固液浆 料的温度起伏还缺乏必要的试验依据, 因此金属半固态组织的演变机制还有许多基本理论及 技术问题需要解决。与此同时,也存在着可逆的“大结构”转换过程。所谓“大结构”是指处于合适位向
29、的 固相微粒在相互碰撞中,会在接触点“焊合”在一起,并逐渐附聚成团。当剪切速率较低的 时候,“焊合”在一起的固相微粒不易被打散,即发生“有效碰撞”的几率较高,容易形成 “大结构”。当剪切速率很高时,由于搅拌力大,固相微粒发生焊合很困难,而且原先焊合 在一起的也容易被打散。在等温搅拌时,随剪切速率降低或上升, “大结构”也随着产生或 消失。固相微粒尺寸大小与冷却速度密切相关, 冷却速度越快, 固相微粒尺寸越小, 冷却速度 越慢,固相微粒尺寸越大。4.2.2 铝合金的半固态凝固组织及其影响因素一、搅拌强度对半固态组织的影响搅拌强度是很难直接测定或计算出来的, 但是可以通过其他参数来描述。 对于机械
30、搅拌, 搅拌强度是搅拌转速的函数。因此, 常用搅拌转速来描述搅拌强度。而对于电磁搅拌, 常用 磁感应强度来描述搅拌强度。(1) 磁感应强度的影响图 4-12 是 Al-6 6 Si 合金在磁感应强度不同的旋转磁场的搅拌作用下,所得到的凝固组织。图 4-12 (b) 和 图 4-12 (c) 所示的半固态组织是经过磁感应强度为0 0759T 和 0 1153T的电磁搅拌得到的,其初生相晶粒细小,基体上分布比较均匀。图 4-12(c) 中的初生相微粒比图 4-12(b) 中的更为细小一些,但并不是很明显。然而图 4-12(a) 所示的半固态组织与图 4-12(b) 和图 4-12(c) 相比,有明
31、显的差别,它所采用的磁感应 强度为 0.0446T 。可以明显地看到,它的初生相微粒最为粗大,而且合并生长的痕迹非常明 显,初生相微粒在基体上的分布很不均匀, 众多的初生相微粒相互簇集在一起。 造成以上差 别的主要原因是由于磁感应强度的不同。 电磁搅拌的一个重要作用就是细化晶粒, 而晶粒细 化的主要原因之一就是电磁搅拌造成了“晶粒倍增”现象。晶粒倍增首先是由于枝晶的再熔化, 在电磁搅拌的作用下, 铝液的湍流不断地将热脉冲 带到了液固界面, 这种热脉冲加速了枝晶臂的熔化过程。 枝晶臂被分离后, 一旦随湍流被带到稍微过冷的液体中, 即可形成一个新的晶体。 此外, 熔体流动在枝晶臂根部造成了应力集
32、中,导致枝晶臂的机械断裂, 断裂的枝晶臂也可以形成一个新的晶体, 这样也会造成晶粒倍 增。晶粒倍增的程度与电磁搅拌强度密切相关,总的说来,搅拌强度越大, 晶粒倍增现象越 明显, 晶粒也就越细小。 但是搅拌强度与晶粒细化程度并不是成正比的,当电磁搅拌强度比较小的时候, 其细化晶粒的作用比较明显, 如果电磁搅拌强度大到某种程度后, 细化晶粒的 作用就不显著了。对于半固态铸造,合并生长也是晶粒长大的一种方式。从图 4-12 中可以看到,加大电 磁搅拌强度可以有效抑制晶粒的合并生长。 这主要是由于熔体的对流强度越大, 越容易将聚 集在一起的初生相冲散。同时避免了初生相微粒的聚集,使其更均匀地分散在基体
33、中。(2) 拌转速的影响实验发现,搅拌转速可使固相组织发生变化,图4-13是搅拌转速为2.38r/s和7.16r/s、固相分数均为0.45的AblO % Cu合金金相照片。由图可以看出高搅拌转速下,固相颗粒 比较分散,而低转速下固相颗粒聚集现象明显(白色为固相 )。根据两相流动原理, 高转速下的固相组织易于流动, 而低转速下由于固相的聚集使其不 呈粒状,所以流动困难。二、搅拌温度对半固态组织的影响以铝锡合金为例, 其凝固发生在纯铝液相线和纯锡液相线之间的温度范围,凝固区间在658230 C之间,因此铝锡合金的固相分数主要与凝固温度即搅拌温度有关,搅拌温度越低,其固相分数越大;搅拌温度越高,其固
34、相分数越小。表 4-1 为搅拌温度与铝锡合金半固态浆 料的固相分数的实验数据。图 4-14 为铝锡合金半固态浆料的固相分数与搅拌温度之间的关 系,对其进行理论回归分析,得到回归方程为y=1683-4.86x+0.0035x 2(41)式中y 铝锡合金半固态浆料的固相分数;x 搅拌温度。回归相关系数 R 为 0.99839,说明回归方程已正确地反映了铝锡合金半固态浆料地固相 分数与搅拌温度之间的非线性关系。三、合金成分对半固态组织的影响合金成分变化,部分凝固合金的流变组织会发生变化,图415是Al-5 % Cu合金的流变组织与 Al-10 %Cu 合金的流变组织,由二者对比可知, Cu 含量增加
35、使固相中包裹的液相 增多。 根据成分过冷理论,合金浓度越高,越有利于产生成分过冷,从而使固液界面越不 稳定, 其结果是界面更加不光滑。不难看出, 颗粒的固液界面越不光滑, 它包裹的液相越 多,这部分液相不参加流动,而随包裹它的固相一起运动,因而使实际液相量减少,固相分 数增加。四、冷却速度对半固态组织的影响如果固相分数不变, 低冷却速度的固相颗粒平均尺寸较大。 产生这种现象的原因是低冷 却速度达到同样固相分数所需的时间较长, 即低冷却速度下颗粒有较长的生长时间, 故颗粒 较大。 高冷却速度时达到相同固相分数所需的时间较短, 颗粒长大受到限制, 所以颗粒尺寸 较小。4.2.3 铸铁及钢的半固态凝
36、固组织及影响因素一、 铸铁的半固态凝固组织 以亚共晶白口铁为例,该种铸铁的碳、硅含量很低,一般含碳量控制在24% -26%的范围内,含硅量控制在 1. 4%以下,碳、硅总量控制在3. 8% 4. 2%之间,因此该合金在凝固过程中将处于很宽的液固两相区内,其初生奥氏体枝晶在一般的铸造条件下很发达。图4-16是在等温条件下经不同的搅拌时间的组织演变过程。图4-16(a)是经5s时的组织形貌, 可以看到在流动的液流冲刷下, 枝晶的方向性已不很明显, 且一次枝晶已发生了明显 的弯曲, 有的二次枝晶与一次枝晶发生了分离, 有的二次枝晶间发生了合并, 也有的一次枝 晶的某些端部相互靠近, 此时颗粒大小不均
37、, 方向各异, 堆积混杂。但局部的一些粗大一次 枝晶在搅拌过程中像拦水的横木一样阻碍液流的流动而成为搅拌的主要阻力(图4-16(b),图中的二次枝晶已发生了明显的随流转动现象,并且颗粒已经分离。 虽然可以看出一次晶沿液流方向也发生了倾转, 但迎流方向有突出生长迹象, 而背流方向较为光 滑,在低的激磁电流作用下或在短时间内这种一次枝晶很难变为圆整的颗粒。随搅拌时间的延长, 在晶粒的碰撞及液体的对流作用下, 在枝晶的脖颈处产生很大的弯曲应力, 因此枝晶 的弯曲程度增大, 特别是枝晶分化成颗粒状形态, 颗粒间的缝隙大小不等,有的颗粒间的缝隙较大, 也有的缝隙正在形成, 在形态上一次枝晶和二次枝晶已难
38、以区别,已基本具备了颗粒状组织的基本形貌(图4-16(c),可以看出,颗粒间缝隙较为光滑,大部分不像是断裂形成 而像是流体潺蚀的结果, 这是一尚未见到报道的很奇特的现象。 在第一等温阶段搅拌过程中, 搅拌的温度较高, 同时搅拌过程和结晶过程又是放热过程而使凝固后的晶体接近熔点,其强度小、 塑性好。 因此随着搅拌过程的进行,枝晶的弯曲是必然的, 弯曲会使薄弱的地方潺蚀 加剧。 当然也会出现某些薄弱环节的断裂。 如果考虑随后冷却所带来的组织恢复,上述搅拌时的情况会更明显。图 4-16(d)是搅拌120s时的情况,可以看出,枝晶已不存在,颗粒大小 比较一致,只是圆整程度欠佳,同时前一阶段的晶粒粗大程
39、度由于不断碰撞和摩擦而降低, 当然这与一定温度下的固相分数有关, 即前一阶段的结晶潜热已散失完毕, 升温过程已结束, 搅拌过程则主要是颗粒细化和球化的过程。 为了增加固相分数, 进一步增加颗粒间碰撞的几 率,可将等温温度进一步降低, 即在第二等温过程中继续搅拌, 搅拌温度的降低导致颗粒细 小、圆整和固相分数的增多,如图4-17(a)、(b)所示。图417(a)是转入第二阶段后再搅拌30s(即累积搅拌时间为 150s )时的情况,颗粒的圆整度增加,分布较为均匀,但在组织中形 成了许多白亮的颗粒簇, 当将搅拌器的激磁电流提高近一倍时, 这种颗粒簇才消失。 图 4-17(b) 是在搅拌力提高并搅拌
40、120s(即累积搅拌时间为 2408)后的组织形貌。由于枝晶间的摩擦、 磨损、 剪切以及液体对固相的剧烈的冲刷, 小的颗粒由于能量高而在碰撞过程中易长大, 大 的颗粒因碰撞的几率多而减小,最后获得颗粒圆整、大小比较一致的组织形貌。在第二等温搅拌过程中颗粒簇的形成不是偶然的, 颗粒簇是初生相微粒的相互碰撞并 “焊合” 在一 起形成的。当剪切速率较低时, “焊合”在一起的固相颗粒不易被打散,即发生“有效碰撞” 的几率较高,容易形成“大结构” 。而当搅拌速度较高时,由于搅拌力大,剪切作用强,固 相颗粒发生焊合很困难, 而且原先焊合在一起的也容易被打散。 因此在等温搅拌时, 随剪切 速率的降低或升高,
41、 “大结构”也随着产生或消失。当微粒簇被保留下来时, 由于其内部缺乏低熔点的基体相,在部分重熔时, 仍然会“焊 合”在一起。这会干扰后续的触变成形过程,只能通过更大的变形力将其抵消l 别。因此,半固态浆料的制作不希望形成初生相的微粒簇。从图 418可以看到, 虽然组织形貌也发生了明显的变化, 初生的枝晶组织已消失并在 一定程度上细化,但颗粒大小不一, 形状各异,颗粒圆整度也比较差, 在大颗粒上可明显看 到二次枝晶折断的痕迹, 颗粒间的断痕不是很光滑, 说明搅拌对枝晶的断裂作用大于流体的 潺蚀作用。从等温的组织演化进程来看, 一次枝晶臂的弯曲占有一定地位, 当然这种弯曲可能是已 生长的一次枝晶臂
42、在流场中的弯曲, 也可能是众多枝晶在流场中的弯曲生长, 而更多的是二 者兼有之, 因为在搅拌初期就可以分辨出枝晶弯曲。 另一方面在液固两相共存的情况下, 凝固颗粒的生长和熔化消失都在不断地进行, 搅拌的温度、 速度及坩埚内不同径向处的速度差 对熔体流态的改变及对上述过程的影响还有待研究。 而枝晶在弯曲过程中的粒化主要与枝晶 内成分起伏有关。二、钢的半固态凝固组织以弹簧钢 60Si2Mn 为例,经过金相观察发现,未经电磁搅拌的试样的一次结晶组织与 一般铸钢件或铸钢锭相似, 存在发达的柱状树枝晶和中心粗大的等轴晶, 柱状枝晶层的厚度 约为20 30mm ,柱状晶内平行排布多个枝晶,且枝晶的一次臂的
43、方向基本上与传热方向相同,由表面伸向试样的中心,枝晶的一次臂十分发达,其长度约为10 20mm,几乎与柱状晶层的厚度相当,见图 4-19 所示。图4-20(a)-(d)分别是该弹簧钢经电磁搅拌,搅拌功率分别为 2kW、7kW、12kW、20kW,其一次结晶组织的金相照片, 看出它们的一次结晶组织中不存在柱状枝晶层, 从试样的表面 到心部基本是由等轴晶(如图4-20(d)、或退化枝晶如图 4-20(c)、图4-20(b)、或不同取向的 短枝晶(如图4-20(a)。这说明电磁搅拌能有效地消除弹簧钢发达的柱状晶层。出现这种结果必然与电磁搅拌改变一次结晶的奥氏体的形核和生长条件有关。从图 4-20 中
44、还可以看出,搅拌功率对 60Si2Mn 的一次结晶组织产生很大的影响。在搅 拌功率为 2kW 的试样中,一次结晶的奥氏体为具有不同取向的短树枝晶,其一次臂最大尺 寸可达到Imm左右,如图4-20(a)所示;随着搅拌功率的增加,短枝晶的一次臂变小,在搅 拌功率为 7kW 的试样中,一次结晶的奥氏体的枝晶形态没有试样明显,但仍能观察到少量 的短的树枝晶,如图 4-20(b)所示;而在搅拌功率为12kW的试样中,观察不到短树枝晶,但仍能看出枝晶的迹象,称之为退化枝晶(dedendrite),如图4-20(c)所示;当搅拌功率增加到20kW,一次结晶的奥氏体转化为等轴晶,且变得细小,其晶粒大小约为未经
45、电磁搅拌试 样的柱状树枝晶的一次臂间距。 这是由于搅拌功率的加大, 金属熔体的旋转速度加快, 紊流 作用加剧, 合金凝固时液相区、 液固两相区的温度场和溶质浓度场更趋于平缓, 各个微区的 晶核条件和生长条件基本相同, 晶核在各方向的生长速度基本相等, 凝固后得到等轴晶组织。 除了搅拌功率外,其他工艺参数对半固态组织也有一定的影响,表4-2 为 60Si2Mn 弹簧钢的电磁搅拌工艺参数。在1450C进行等温搅拌,结果表明等温搅拌 2min试样的凝固组织绝大部分是等轴晶,但仍能观察到枝晶的迹象,见图4-21 (a);而在1450C等温搅拌5min试样和等温搅拌 I0min 试样的凝固组织中,没有枝
46、晶存在,并且原奥氏体的晶粒更为圆整,见图 4-21(b)。在电压为I00V、功率为8.5kW的条件下,分别在不同的温度区间内对60Si2Mn弹簧钢进行连续的电磁搅拌,结果发现在1510-1460的温度范围内进行电磁搅拌试样的凝固组织中存在枝晶,见图 4-21(c);在15101440C和15101420C的温度范围内进行电磁 搅拌凝固组织为等轴晶,见图 4-21(d)。4.2.4 半固态金属的力学行为半固态金属加工主要是采用流变铸造的铸锭重新加热到液固两相区之间的温度,再挤压或锻造成形件。 实践证明, 由于半固态金属具有触变性, 所以铸坯在成形过程中具有明显的 超塑性效应和充填性能, 而且变形
47、抗力也小, 可在较高速度下变形。从变形机理分析, 其变 形过程是一个从塑性变形到超塑性变形的过程。 表 4-3所示为铝合金在不同的加工方法与热 处理状态下的力学性能。半固态合金最重要的特点是具有球形的初生相微粒,在液固两相温度区间内, 其球形的初生相仍然保持为固相颗粒。 因此, 半固态合金的变形有自己独特的性质, 它不同于液态金 属的流动, 也不同于固态合金的高温塑性变形。 在实际应用中, 主要是应用这一特性来成形 零件。为了进一步促进半固态合金成形技术应用,需对其在半固态下的力学特性进行研究, 即流变应力的规律。一、低熔点半固态铝镁合金的力学特性以工业用变形铝合金 2618 和 7075 为
48、例,其在半固态下变形在热分析仪 DT-30 上由 DTA 差热分析测定合金的液相线温度和固相线温度分别为638C和549C,结晶温度区间为 89C。从图中可以看出,半固态试样在固态或液固两相区 压缩变形抗力均远远小于常规铸造组织固态压缩变形抗力, 并且半固态试样在液固两相区的 压缩变形抗力均小于固态压缩变形抗力。 随着温度的升高, 变形抗力降低; 同时随着变形程 度的增加, 在液固两相区的压缩变形抗力与固态压缩变形抗力相反,应变在 左右达到最大值后降低,发生应变软化现象。图4-23为半固态试样在液固相温度区间T=600 C时不同变形速率下的应力一应变曲线,由图可以看出,随着变形速率的升高,变形
49、抗力增加,而随着变形程度的增加,应变在 005 左右达到最大值后同样发生应变软化现象。在液固两相区压缩变形时,常规铸造组织中的枝晶形成连续的网络骨架,承受应力的 能力较强, 因而压缩变形时变形抗力较高。 半固态试样在此温度区间压缩变形时, 变形机制 主要为初始晶粒的旋转、 滑动, 而晶粒变形很小, 因而半固态试样变形抗力降低。 随着温度 的升高, 合金中液相比例增多, 变形抗力又有所下降。 而常规铸造组织在液固两相区变形时, 虽然也有液相存在, 但其粗大的枝晶组织互相参叉交错阻碍变形的进行, 同时变形时枝晶臂 要发生变形,枝晶臂为固态特性,因而枝晶臂的变形也使流动应力增加。图 4-24 为常规
50、铸造及半固态铝合金 7075 在变形速率 不同变形温度 (490'E、560C、 580'E、600C)下的应力曲线。由DTA差热分析可知,铝合金 7075的固相线和液相线温度分别为477C和635C,因此所有变形温度均在液固温度范围内。 由图可以看出, 半固态试样的流动应力均远远小相应 温度的常规铸造组织的流动应力, 并且由图还可以看出, 无论是常规铸造组织还是半固态组 织,在液固两相区变形时,随变形温度的升高,流动应力降低。根据常规铸造及半固态铸造铝合金7075在液固两相区T=560 C时不同变形速率下的流动应力曲线可以看出, 无论是常规铸造组织还是半固态铸造组织在液固两相
51、区变形时均随着 变形速率的升高, 流动应力增加, 随着变形程度的增加, 应力在左右达到最大值后同样发生应变软化现象, 流动应力降低, 并且变形速率越高, 流动应力降低越明显。这主要 是由于在变形初期液相流动和组织结构的密集化导致流动应力增加,而随着变形程度的增 加,液相流动加剧,试样表面产生液相偏析,导致表面裂纹产生,促使流动应力降低。二、高熔点半固态钢铁材料的力学特性以弹簧钢60Si2Mn为研究对象,半固态下的变形温度为1420 C、1400 C、1380 C和热轧状态下的变形温度为1200 C;工程应变为 =0. 6,真应变为 0. 9;变形速率分别取01、 05 和 1 。从图4-25可
52、以看出,在1200C下,半固态坯料(a)与常规坯料(b)的应力-应变曲线基本 相同。但由于半固态坯料组织均匀,晶粒较小,因此,其屈服强度要高2MPa。水田伞Z 1加t温度下,半固态坯料(a)与常规铸造坯料(b)的应力-应变曲线社梳 由于在实验过程中有液相挤出,不能通过实验装置直接得到实验所需的真应力-应变曲线,只能得到压力户和夹头位移厶A扣关系。如果试样的原始高度为Ao,半径为。,根据每一时刻夹头的位移量和体积不变定律,试样的瞬时平均横截面积 S 为s:亡主义(4 2)瞬时的真应力为 口:言(43)瞬时的真应变为£二h(h云M) (4-4)由此得到真应力应变曲线。通过实验发现,当试样
53、的变形 量很小 (c: 02 之前 )时,由于没有液相挤出,真应力应变满 足上述关系式。当变形量逐渐增大,有液相挤出时,在随后的变 形过程中,夹头与试样之间的接触面积并不发生改变,因此对实 验数据做了如下处理 “ 1:在变形量超过 c: 02 之后,把 c: 0, 2 时的接触面积作为常数,代人式(43)中,算出随后的瞬时真43 金属半固态的制备方法金属半固态浆料或坯料的制备是半固态成形加工的基础, 目前半固态浆料或坯料的制备 方法很多, 但常用的方法主要是电磁搅拌法和机械搅拌法, 其中电磁搅拌法占主导地位, 下 面分别简要介绍一些半固态制备方法。43 1 电磁搅拌法 电磁搅拌法是利用感应线圈
54、产生的平行于或者垂直于铸形方向的强磁场对处于液固 相线之间的金属液形成强烈的搅拌作用, 产生剧烈的流动, 使金属凝固析出的枝晶充分破碎 并球化, 进行半固态浆料或坯料的制备 (参见图 47) 。该方法不污染金属液, 金属浆料纯净, 不卷入气体,可以连续生产流变浆料或连铸锭坯, 产量可以很大。 通常,影响电磁搅拌效果 的因素有搅拌功率、搅拌时间、冷却速度、金属液温度、浇注速度等。由于加工过程的局限 性,通常认为,直径大于 150mm(6 英寸 )的铸坯不宜采用电磁搅拌法生产4 3 2 机械搅拌法 机械搅拌法分为非连续机械搅拌法和连续机械搅拌法。 非连续机械搅拌法是最早应用于 制备半固态金属浆料的
55、方法。 该法利用机械旋转的叶片或搅拌棒改变凝固中的金属初晶的生 长与演化, 以获得球状或类球状的初生固相的半固态金属流变浆料。在搅拌过程中, 通过控制搅拌室的温度来控制半固态金属的初生固相分数, 通过改变叶片或搅拌棒的转速来控制剪 切速率,并可以保证整个搅拌过程中的剪切速率不变。该种搅拌装置结构简单、造价低、操 作方便, 但该种搅拌方法的半固态金属浆料的产量很小, 只适用于实验室的小规模试验研究 工作。连续机械搅拌方法也是最早应用于制备半固态金属浆料的方法,其搅拌工艺原理参见 图 4 7 。该装置结构较复杂,造价较高。但搅拌室上方的金属熔池可以防止卷入气体,又 可保证连续供给金属液。 利用连续
56、机械搅拌方法, 可以提供半固态金属浆料, 也可以在连续 搅拌器的出口安放一个结晶器和牵引机构来生产半固态金属锭料。4 33 应变诱导熔化激活法 应变诱导熔化激活法是制备半固态金属坯料的另一种方法,它是以下英文单词的意译,即strain-induced melt activation process,简称SIMA。此方法的工艺要点是:利用传统连铸 方法预先连续铸造出晶粒细小的金属锭坯, 将该金属锭坯在回复再结晶的温度范围内进行大 变形量的热态挤压变形, 通过变形破碎铸态组织, 然后再对热态挤压变形过的坯料加以少量 的冷变形, 在坯料的组织中储存部分变形能量, 最后按需要将经过变形的金属锭坯切成一
57、定 大小,迅速将其加热到固液两相区并适当保温,即可获得具有触变性的球状半固态坯料。434 液态异步轧挤法液态异步轧挤法实质是剪切冷却轧制 (shearing-cooling-rolling) ,简称 SCR 法, 其工艺原理是: 利用一个机械旋转的辊轮把静止的弧状结晶壁上生长的初晶不断碾下、 破碎, 并与剩余的液体一起混合,形成流变金属浆料,是一种高效制备半固态坯料的方法。435 超声振动法 超声振动法制备半固态金属浆料的基本原理是:利用超声机械振动波扰动金属的 凝固过程, 细化金属晶粒, 获得球状初晶的金属浆料。 超声振动波作用于金属熔体的方法一 般有两种, 一种是将振动器的一面作用在模具上
58、, 模具再将振动直接作用在金属熔体上, 但 更多的是振动器的一面直接作用于金属熔体。 经过实验证明, 对合金液施加超声振动, 不仅 可以获得球状晶粒,还可以使合金的晶粒直径减小,获得非枝晶坯料。4 36 粉末冶金法 粉末冶金是一种金属或合金快速凝固技术,它利用金属雾化技术的方法制备细小的金 属粉末。 雾化技术就是利用离心力、 机械力或高速流体冲击力等外力的作用使金属熔体分散 成尺寸很小的雾状熔滴, 并使熔滴在与流体或冷模接触中迅速冷却凝固。 金属粉末的一般制 备方法有:双流气体雾化、双流水雾化、超声波气体雾化、高速旋转筒雾化(1ISS)等,其中双流气体雾化、双流水雾化、超声波气体雾化应用最为广泛。粉末冶金法制备半固态金属坯料的一般工艺路
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 收废铁基础知识培训内容课件
- 2025年养生知识竞赛试题及答案
- 播音主持培训课件社团
- 播音与主持社团课件
- 2025年水上交通安全责任协议
- 2025社会工作者面试试题及答案
- 摸鱼儿-雁丘词课件
- 2025年国家工作人员学法用法考试题库附参考答案
- 2025年社会工作者《初级实务》考试真题及答案
- 2024年保险行业人员(保险学教程)基础知识试题与答案
- 2025年空军专业技能类文职人员招聘考试(档案)历年参考题库含答案详解(5套)
- 上海虹桥新港商业策划过程稿
- 文秘考试题库及答案
- T-CECC 37-2025 公共数据资源授权运营合规要求
- 2025担保借款还款协议书(医疗器械融资)
- 2025年小学教师资格综合素质教育心理学理论应用测试题库
- 医院信息科笔试题库及答案
- 专题特训五等腰三角形的“三线合一”
- 无负压供水系统施工技术与方案
- 2025年高考真题-化学(湖南卷) 含答案
- 2025至2030中国无水氟化氢行业市场深度研究及发展前景投资可行性分析报告
评论
0/150
提交评论