




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.2.1 和、差、积、商的求导法则和、差、积、商的求导法则定理定理并且并且可导可导处也处也在点在点分母不为零分母不为零们的和、差、积、商们的和、差、积、商则它则它处可导处可导在点在点如果函数如果函数,)(,)(),(xxxvxu).0)()()()()()()()( )3();()()()( )()( )2();()( )()( )1(2 xvxvxvxuxvxuxvxuxvxuxvxuxvxuxvxuxvxu3.2 求导法则求导法则证证(3)(3),0)( ,)()()( xvxvxuxf设设hxfhxfxfh)()(lim)(0 hxvhxvhxvxuxvhxuh)()()()()()(
2、lim0 hxvxuhxvhxuh)()()()(lim0 证证(1)(1)、(2)(2)略略. .hxvhxvxvhxvxuxvxuhxuh)()()()()()()()(lim0 )()()()()()()()(lim0 xvhxvhxvhxvxuxvhxuhxuh 2)()()()()(xvxvxuxvxu .)(处可导处可导在在xxf推论推论; )( )()1(11 niiniixfxf);( )()2(xfCxCf ; )()()()()()()()( )()3(1121211 ninikkkinnniixfxfxfxfxfxfxfxfxf例题分析例题分析例例1 1.sin223的导
3、数的导数求求xxxy 解解23xy x4 例例2 2.ln2sin的导数的导数求求xxy 解解xxxylncossin2 xxxylncoscos2 xxxln)sin(sin2 xxx1cossin2 .cos x .2sin1ln2cos2xxxx 例例3 3.tan的导数的导数求求xy 解解)cossin()(tan xxxyxxxxx2cos)(cossincos)(sin xxx222cossincos xx22seccos1 .sec)(tan2xx 即即.csc)(cot2xx 同理可得同理可得例例4 4.sec的导数的导数求求xy 解解)cos1()(sec xxyxx2cos
4、)(cos .tansecxx xx2cossin .cotcsc)(cscxxx 同理可得同理可得例例5 5.sinh的导数的导数求求xy 解解 )(21)(sinh xxeexy)(21xxee .cosh x 同理可得同理可得xxsinh)(cosh xx2cosh1)(tanh 例例6 6).(,0),1ln(0,)(xfxxxxxf 求求设设解解, 1)( xf,0时时当当 x,0时时当当 xhxhxxfh)1ln()1ln(lim)(0 )11ln(1lim0 xhhh ,11x ,0时时当当 xhhfh)01ln()0(lim)0(0 , 1 hhfh)01ln()0(1lnli
5、m)0(0 , 1 . 1)0( f.0,110, 1)( xxxxf3.2.2 复合函数的求导法则复合函数的求导法则定理定理).()(,)(,)()(,)(0000000 xufdxdyxxfyxuufyxxuxx 且其导数为且其导数为可导可导在点在点则复合函数则复合函数可导可导在点在点而而可导可导在点在点如果函数如果函数即即 因变量对自变量求导因变量对自变量求导, ,等于因变量对中间变等于因变量对中间变量求导量求导, ,乘以中间变量对自变量求导乘以中间变量对自变量求导.(.(链式法则链式法则) )证证,)(0可可导导在在点点由由uufy )(lim00ufuyu )0lim()(00 uu
6、fuy故故uuufy )(0则则xyx 0lim)(lim00 xuxuufx xuxuufxxx 0000limlimlim)().()(00 xuf 推广推广),(),(),(xvvuufy 设设.)(dxdvdvdududydxdyxfy 的导数为的导数为则复合函数则复合函数 例例3 3.sinln的导数的导数求函数求函数xy 解解.sin,lnxuuy dxdududydxdy xucos1 xxsincos xcot 例例4 4.)1(102的导数的导数求函数求函数 xy解解)1()1(10292 xxdxdyxx2)1(1092 .)1(2092 xx例例5 5.arcsin222
7、22的导数的导数求函数求函数axaxaxy 解解)arcsin2()2(222 axaxaxy2222222222121xaaxaxxa .22xa )0( a例例6 6.)2(21ln32的导数的导数求函数求函数 xxxy解解),2ln(31)1ln(212 xxy)2(31211212 xxxy)2(3112 xxx例例7 7.1sin的导数的导数求函数求函数xey 解解)1(sin1sin xeyx)1(1cos1sin xxex.1cos11sin2xexx 3.2.3 反函数的求导法则反函数的求导法则定理定理.)(1)(,)(,0)()(xxfIxfyyIyxxy 且有且有内也可导内
8、也可导在对应区间在对应区间那末它的反函数那末它的反函数且且内单调、可导内单调、可导在某区间在某区间如果函数如果函数即即 反函数的导数等于直接函数导数的倒数反函数的导数等于直接函数导数的倒数.证证,xIx 任取任取xx 以以增增量量给给的单调性可知的单调性可知由由)(xfy , 0 y于是有于是有,1yxxy ,)(连续连续xf),0(0 xy0)( y 又知又知xyxfx 0lim)(yxy 1lim0)(1y .)(1)(yxf 即即), 0(xIxxx 例例1 1.arcsin的导数的导数求函数求函数xy 解解,)2,2(sin内单调、可导内单调、可导在在 yIyx, 0cos)(sin
9、yy且且内有内有在在)1 , 1( xI)(sin1)(arcsin yxycos1 y2sin11 .112x .11)(arccos2xx 同理可得同理可得;11)(arctan2xx )(arcsin x.11)cot(2xx arc例例2 2.log的的导导数数求求函函数数xya , 0ln)( aaayy且且,), 0(内有内有在在 xI)(1)(log yaaxaayln1 .ln1ax 解解,),(内单调、可导内单调、可导在在 yyIax特别地特别地.1)(lnxx 3.2.4 初等函数的求导问题初等函数的求导问题xxxxxxxCtansec)(secsec)(tancos)(s
10、in0)(2 1.常数和基本初等函数的导数公式常数和基本初等函数的导数公式xxxxxxxxxcotcsc)(csccsc)(cotsin)(cos)(21 axxaaaaxxln1)(logln)( xxeexx1)(ln)( 2211)(arctan11)(arcsinxxxx 2211)cot(11)(arccosxxxx arc2.函数的和、差、积、商的求导法则函数的和、差、积、商的求导法则设设)(),(xvvxuu 可导,则可导,则(1) vuvu )(, (2)uccu )((3)vuvuuv )(, (4))0()(2 vvvuvuvu.( ( 是常数是常数) )C 3.复合函数的
11、求导法则复合函数的求导法则).()()()()(),(xufxydxdududydxdyxfyxuufy 或或导数为导数为的的则复合函数则复合函数而而设设利用上述公式及法则初等函数求导问题可完全解利用上述公式及法则初等函数求导问题可完全解决决.注意注意: :初等函数的导数仍为初等函数初等函数的导数仍为初等函数.例例1 1.的导数的导数求函数求函数xxxy 解解)(21 xxxxxxy)(211(21 xxxxxxx)211(211(21xxxxxx .812422xxxxxxxxxx 例例2 2.)(sin的导数的导数求函数求函数nnnxfy 解解)(sin)(sin1 nnnnnxfxnfy
12、 )(sin1 nnnxfnf .cos1113 ffxxnnnnn )(sin)(sin11 nnnnxxnfnf )(sin)(sin11 nnnnxxnfnf 1cos nnnxx )(sin11nnnxnfnf4. 双曲函数与反双曲函数的导数双曲函数与反双曲函数的导数xxcosh)(sinh xxsinh)(cosh xxxcoshsinhtanh xxxx222coshsinhcosh)(tanh 即即xx2cosh1)(tanh 同理同理)11(1122xxxx 211x 112 x211x )1ln(sinh2xxx ar221)1()sinh(xxxxx arar)cosh(
13、xar)tanh( x例例3 3.)harctan(tan的导数的导数求函数求函数xy 解解)(tanhtanh112 xxyxx22cosh1tanh11 xxx222cosh1coshsinh11 xx22sinhcosh1 .sinh2112x 3.2.5 隐函数的导数隐函数的导数定义定义: :.)(称为隐函数称为隐函数由方程所确定的函数由方程所确定的函数xyy .)(形式称为显函数形式称为显函数xfy 0),( yxF)(xfy 隐函数的显化隐函数的显化问题问题:隐函数不易显化或不能显化如何求导隐函数不易显化或不能显化如何求导?隐函数求导法则隐函数求导法则: :用复合函数求导法则直接对
14、方程两边求导用复合函数求导法则直接对方程两边求导.一一、隐函数求导法则隐函数求导法则例例1 1.,00 xyxdxdydxdyyeexy的导数的导数所确定的隐函数所确定的隐函数求由方程求由方程解解,求导求导方程两边对方程两边对x0 dxdyeedxdyxyyx解得解得,yxexyedxdy , 0, 0 yx由原方程知由原方程知000 yxyxxexyedxdy. 1 例例2 2.,)23,23(,333线通过原点线通过原点在该点的法在该点的法并证明曲线并证明曲线的切线方程的切线方程点点上上求过求过的方程为的方程为设曲线设曲线CCxyyxC 解解,求导求导方程两边对方程两边对xyxyyyx 3
15、33322)23,23(22)23,23(xyxyy . 1 所求切线方程为所求切线方程为)23(23 xy. 03 yx即即2323 xy法线方程为法线方程为,xy 即即显然通过原点显然通过原点.二、对数求导法二、对数求导法观察函数观察函数.,)4(1)1(sin23xxxyexxxy 方法方法: :先在方程两边取对数先在方程两边取对数, 然后利用隐函数的求导然后利用隐函数的求导方法求出导数方法求出导数.-对数求导法对数求导法适用范围适用范围: :.)()(的情形的情形数数多个函数相乘和幂指函多个函数相乘和幂指函xvxu例例3 3解解 142)1(3111)4(1)1(23 xxxexxxy
16、x等式两边取对数得等式两边取对数得xxxxy )4ln(2)1ln(31)1ln(ln求导得求导得上式两边对上式两边对 x142)1(3111 xxxyy.,)4(1)1(23yexxxyx 求求设设例例4 4解解.),0(sinyxxyx 求求设设等式两边取对数得等式两边取对数得xxylnsinln 求导得求导得上式两边对上式两边对xxxxxyy1sinlncos1 )1sinln(cosxxxxyy )sinln(cossinxxxxxx 一般地一般地)0)()()()( xuxuxfxv)()(1)(lnxfdxdxfxfdxd 又又)(ln)()(xfdxdxfxf )()()()(l
17、n)()()()(xuxuxvxuxvxuxfxv )(ln)()(lnxuxvxf 3.2.6 由参数方程所确定的函数的导数由参数方程所确定的函数的导数.,)()(定的函数定的函数称此为由参数方程所确称此为由参数方程所确间的函数关系间的函数关系与与确定确定若参数方程若参数方程xytytx 例如例如 ,22tytx2xt 22)2(xty 42x xy21 消去参数消去参数问题问题: : 消参困难或无法消参如何求导消参困难或无法消参如何求导?t),()(1xttx 具有单调连续的反函数具有单调连续的反函数设函数设函数)(1xy , 0)(,)(),( ttytx 且且都可导都可导再设函数再设函
18、数由复合函数及反函数的求导法则得由复合函数及反函数的求导法则得dxdtdtdydxdy dtdxdtdy1 )()(tt dtdxdtdydxdy 即即,)()(中中在方程在方程 tytx例例1 1解解dtdxdtdydxdy ttcos1sin taatacossin 2cos12sin2 tdxdy. 1 .方方程程处的切线处的切线在在求摆线求摆线2)cos1()sin( ttayttax.),12(,2ayaxt 时时当当 所求切线方程为所求切线方程为)12( axay)22( axy即即例例2 2解解.)2(;)1(,21sin,cos,002000的速度大小的速度大小炮弹在时刻炮弹在
19、时刻的运动方向的运动方向炮弹在时刻炮弹在时刻求求其运动方程为其运动方程为发射炮弹发射炮弹发射角发射角以初速度以初速度不计空气的阻力不计空气的阻力ttgttvytvxv xyovxvyv0v.,)1(00可由切线的斜率来反映可由切线的斜率来反映时刻的切线方向时刻的切线方向轨迹在轨迹在时刻的运动方向即时刻的运动方向即在在tt)cos()21sin(020 tvgttvdxdy cossin00vgtv .cossin0000 vgtvdxdytt轴方向的分速度为轴方向的分速度为时刻沿时刻沿炮弹在炮弹在yxt,)2(000)cos(0ttttxtvdtdxv cos0v 00)21sin(20ttt
20、tygttvdtdyv 00singtv 时刻炮弹的速度为时刻炮弹的速度为在在0t22yxvvv 2020020sin2tggtvv 小结小结反函数的求导法则反函数的求导法则(注意成立条件)(注意成立条件);复合函数的求导法则复合函数的求导法则(注意函数的复合过程(注意函数的复合过程,合理分解正确使用链合理分解正确使用链导法)导法);已能求导的函数已能求导的函数:可分解成基本初等函数可分解成基本初等函数,或常或常数与基本初等函数的和、差、积、商数与基本初等函数的和、差、积、商.);()( )()(xvxuxvxu .)()()()(xvxuxvxu 分段函数分段函数求导时求导时, 分界点导数用
21、左右导数求分界点导数用左右导数求.注意:注意:小结小结隐函数求导法则隐函数求导法则: : 直接对方程两边求导直接对方程两边求导;对数求导法对数求导法: : 对方程两边取对数对方程两边取对数,按隐函数的求按隐函数的求导导 法则求导法则求导;参数方程求导参数方程求导: 实质上是利用复合函数求导法则实质上是利用复合函数求导法则;任何初等函数的导数都可以按常数和基本初任何初等函数的导数都可以按常数和基本初等函数的求导公式和上述求导法则求出等函数的求导公式和上述求导法则求出.关键关键: 正确分解初等函数的复合结构正确分解初等函数的复合结构.思考题思考题 若若)(uf在在0u不可导,不可导,)(xgu 在
22、在0 x可导,且可导,且)(00 xgu ,则,则)(xgf在在0 x处处( )(1)必可导;)必可导;(2)必不可导;)必不可导;(3)不一定可导;)不一定可导;思考题解答思考题解答正确地选择是正确地选择是(3)例例|)(uuf 在在 处不可导,处不可导,0 u取取xxgusin)( 在在 处可导,处可导,0 x|sin|)(xxgf 在在 处不可导,处不可导,0 x )1(取取4)(xxgu 在在 处可导,处可导,0 x44|)(xxxgf 在在 处可导,处可导,0 x )2(一、一、 填空题:填空题:1 1、 设设4)52( xy, ,则则y = =_._.2 2、 设设xy2sin ,
23、 ,则则y = =_._.3 3、 设设)arctan(2xy , ,则则y = =_._.4 4、 设设xycosln , ,则则y = =_._.5 5、 设设xxy2tan10 ,则,则y = =_._.6 6、 设设)(xf可导,且可导,且)(2xfy , 则则dxdy= =_._.7 7、 设设xkexftan)( , ,则则)(xf = =_, 若若ef 4 ,则,则 k_._.练练 习习 题一题一二、二、 求下列函数的导数:求下列函数的导数:1 1、 xy1arccos ; 2 2、xxy2sin ;3 3、)ln(22xaxy ;4 4、)cotln(cscxxy ;5 5、2)2(arcsinxy ; 6 6、xeyarctan ;7 7、xxyarccosarcsin ; 8 8、xxy 11arcsin. .三、三、 设设)(xf,)(xg可导,且可导,且0)()(22 xgxf, ,求函数求函数)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省肇庆市端州区地质中学2024年八上物理期末经典试题含解析
- 江苏省泰兴市黄桥教育联盟2024年化学九年级第一学期期末经典试题含解析
- 江苏省盐城市东台市第二联盟2024-2025学年数学七上期末综合测试模拟试题含解析
- 福建省厦门市湖里区湖里中学2024年八上数学期末复习检测模拟试题含解析
- 江苏省南京市六合区2024-2025学年化学九上期末调研试题含解析
- 四年级上册书写练习计划
- 盐城市亭湖区2024-2025学年九年级化学第一学期期末调研试题含解析
- 江苏省东台市第六教育联盟2024-2025学年数学七年级第一学期期末达标测试试题含解析
- 扬州大学《国外马克思主义专题》2023-2024学年第一学期期末试卷
- 湖南望城金海学校2024-2025学年八上数学期末综合测试试题含解析
- 人行雨棚施工方案
- 2025-2030中国晶圆键合系统行业市场发展趋势与前景展望战略分析研究报告
- 从校园到职场:新员工角色转换与职业化塑造
- 奶茶服务协议合同
- 学生食堂维修改造工程施工组织设计
- 书籍保密协议书范文
- 2025年章鱼小丸子项目可行性研究报告
- “中小学生每天至少2小时体育活动”的价值追求与实现路径研究
- 2024年四川成都农业科技中心招聘笔试真题
- 成都市房产抵押合同模板2025年
- 肾穿刺术的围手术期护理
评论
0/150
提交评论