




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.第一章 三角函数4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、引入 同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
2、二、新课1回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0360角的概念,它是如何定义的呢?B O A 图1生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。师:如图1,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角。旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫的顶点。 师:在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将
3、分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300.师:(1)用扳手拧螺母;(2)跳水运动员身体旋转说明旋转第二周、第三周,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。本节课将在已掌握 角的范围基础上,重新给出角的定义,并研究这些角的分类及记法2.角的概念的推广:(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向旋转到另一位置OB,就形成了角。其中射线OA叫角的始边,射线OB叫角的终边,O叫角的顶点。3正角、负角、零角概念师:为了区别起见,我们把按逆时针方向旋转所形成的角叫正角,如图2中的角为正角,它等于300与7500;我们把按
4、逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢?生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。师:如图3,以OA为始边的角=-1500,=-6600。特别地,当一条射线没有作任何旋转时,我们也认为这是形成了一个角,并把这个角称为零角。师:好,角的概念经过这样的推广之后,就应该包括正角、负角、零角。这里还有一点要说明:为了简单起见,在不引起混淆的前提下,“角”或“”可简记为. 4.象限角师:在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念。同学们已经经过预习,请一位同学回答什么叫:象限角? 生:角的顶
5、点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。师:很好,从刚才这位同学的回答可以知道,她已经基本理解了“象限角”的概念了。下面请大家将书上象限角的定义划好,同时思考这么三个问题:1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?3.是不是任意角都可以归结为是象限角,为什么?处理:学生思考片刻后回答,教师适时予以纠正。答:1.不行,始边包括端点(原点);2端点在原点上;3不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴
6、上,就认为这个角不属于任一象限。师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的预习才是有效果的。师生讨论:好,按照象限角定义,图中的300,3900,-3300角,都是第一象限角;3000,-600角,都是第四象限角;5850角是第三象限角。师:很好,不过老师还有几事不明,要请教大家:(1)锐角是第一象限角吗?第一象限角是锐角吗?为什么?生:锐角是第一象限角,第一象限角不一定是锐角;师:(2)锐角就是小于900的角吗?生:小于900的角可能是零角或负角,故它不一定是锐角;师:(3)锐角就是00900的角吗? 生:锐角:|00<<9
7、00;00900的角:|00<900.学生练习(口答)已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?(1)4200;(2)-750;(3)8550;(4)-5100.答:(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.5.终边相同的角的表示法师:观察下列角你有什么发现? 390° -330° 30° 1470° -1770°生:终边重合.师:请同学们思考为什么?能否再举三个与300角同终边的角?生:图中发现3900,-3300与300相差3600的整数倍,例如,39
8、00=3600+300,-3300=-3600+300;与300角同终边的角还有7500,-6900等。师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差3600的整数倍。例如:7500=2×3600+300;-6900=-2×3600+300。那么除了这些角之外,与300角终边相同的角还有:3×3600+300-3×3600+3004×3600+300-4×3600+300,由此,我们可以用S=|=k×3600+300,kZ来表示所有与300角终边相同的角的集合。师:那好,对于任意一个角,与它终边相同的角的集合
9、应如何表示?生:S=|=+k×3600,kZ,即任一与角终边相同的角,都可以表示成角与整数个周角的和。6.例题讲评例1 设, ,那么有( D )ABC( )D 例2用集合表示:(1)各象限的角组成的集合(2)终边落在 轴右侧的角的集合解:(1) 第一象限角:|k360ok360o+90o,kZ第二象限角:|k360o+90ok360o+180o,kZ第三象限角:|k360o+180ok360o+270o,kZ第四象限角:|k360o+270ok360o+360o ,kZ(2)在 中, 轴右侧的角可记为 ,同样把该范围“旋转” 后,得 ,
10、,故 轴右侧角的集合为 说明:一个角按顺、逆时针旋转 ( )后与原来角终边重合,同样一个“区间”内的角,按顺逆时针旋转 ( )角后,所得“区间”仍与原区间重叠例3 (1)如图,终边落在 位置时的角的集合是_|k360o+120o ,kZ ;终边落在 位置,且在 内的角的集合是_45o,225o_ ;终边落在阴影部分(含边界)的角的集合是_|k360o45ok360o+120o ,kZ练习: (1)请用集合表示下列各角 间的角 第一象限角 锐角 小于 角解答(1) ; ; ; (2)分别写出:终边落在 轴负半轴上的角的集合;终边落在 轴上的角的集合;终边落在第一、三象限角平分线上的角
11、的集合;终边落在四象限角平分线上的角的集合解答(2) ; ; ; 说明:第一象限角未必是锐角,小于 的角不一定是锐角, 间的角,根据课本约定它包括 ,但不包含 例4在 间,找出与下列各角终边相同的角,并判定它们是第几象限角(1) ;(2) ;(3) 解:(1) 与 角终边相同的角是 角,它是第三象限的角;(2) 与 终边相同的角是 ,它是第四象限的角;(3) 所以与 角终边相同的角是 ,它是第二象限角 总结:草式写在草稿纸上,正的角度除以 ,按通常除去进行;负的角度除以 ,商是负数,它的绝对值应比被除数为其相反数时相应的商大1,以使余数为正值练习: (1)一角为 ,其终边按逆时针方向旋转三周后
12、的角度数为_(2)集合M=k,kZ中,各角的终边都在(C )A轴正半轴上,B轴正半轴上,C 轴或 轴上,D 轴正半轴或 轴正半轴上(3)设 , C|= k180o+45o ,kZ , 则相等的角集合为_BD,CE_三.本课小结本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限,本节课的重点是学习终边相同的角的表示法。判断一个角 是第几象限角,只要把 改写成 , ,那么 在第几象限, 就是第几象限角,若角 与角 适合关系: , ,则 、 终边相同;若角 与 适合关系: , ,则 、 终边互为反向延长线判断一个角所
13、有象限或不同角之间的终边关系,可首先把它们化为: , 这种模式( ),然后只要考查 的相关问题即可另外,数形结合思想、运动变化观点都是学习本课内容的重要思想方法四.作业:4-1.1.1任意角(2)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、复习师:上节课我们学习了角的概念的推广,推广后的角分为正角、负角和零角;另外还学习了象限角的概念,下面请一位同学叙述
14、一下它们的定义。生:略师:上节课我们还学习了所有与角终边相同的角的集合的表示法,板书S=|=+k×3600,kZ这节课我们将进一步学习并运用角的概念的推广,解决一些简单问题。二、例题选讲例1写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600<7200的元素写出来:(1)600;(2)-210;(3)363014,解:(1)S=|=600+k×3600,kZS中适合-3600<7200的元素是600+(-1)×3600=-3000600+0×3600=600600+1×3600=4200.(2)S=|=-210+k
15、15;3600,kZ S中适合-3600<7200的元素是-210+0×3600=-210-210+1×3600=3390-210+2×3600=6990说明:-210不是00到3600的角,但仍可用上述方法来构成与-210角终边相同的角的集合。(3)S=|=363014,+k×3600,kZS中适合-3600<7200的元素是363014,+(-2)×3600=-356046,363014,+(-1)×3600=3014,363014,+0×3600=363014,说明:这种终边相同的角的表示法非常重要,应熟练
16、掌握。例2写出终边在下列位置的角的集合(1)x轴的负半轴上;(2)y轴上分析:要求这些角的集合,根据终边相同的角的表示法,关键只要找出符合这个条件的一个角即,然后在后面加上k×3600即可。解:(1)在0360间,终边在x轴负半轴上的角为1800,终边在x轴负半轴上的所有角构成的集合是|=1800+k×3600,kZ (2)在0360间,终边在y轴上的角有两个,即900和2700,与900角终边相同的角构成的集合是S1=|=900+k×3600,kZ 同理,与2700角终边相同的角构成的集合是S2=|=2700+k×3600,kZ 提问:同学们思考一下,
17、能否将这两条式子写成统一表达式?师:一下子可能看不出来,这时我们将这两条式子作一简单变化:S1=|=900+k×3600,kZ =|=900+2k×1800,kZ (1)S2=|=2700+k×3600,kZ =|=900+1800+2k×1800,kZ =|=900+(2k+1)×1800,kZ (2)师:在(1)式等号右边后一项是1800的所有偶数(2k)倍;在(2)式等号右边后一项是1800的所有奇数(2k+1)倍。因此,它们可以合并为1800的所有整数倍,(1)式和(2)式可统一写成900+n×1800(nZ),故终边在y轴上
18、的角的集合为S= S1S2 =|=900+2k×1800,kZ |=900+(2k+1)×1800,kZ =|=900+n×1800,nZ 处理:师生讨论,教师板演。提问:终边落在x轴上的角的集合如何表示?终边落在坐标轴上的角的集合如何表示?(思考后)答:|=k×1800,kZ ,|=k×900,kZ 进一步:终边落在第一、三象限角平分线上的角的集合如何表示?答:|=450+n×1800,nZ 推广:|=+k×1800,kZ ,有何关系?(图形表示)处理:“提问”由学生作答;“进一步”教师引导,学生作答;“推广”由学生归纳。
19、例1 若是第二象限角,则,分别是第几象限的角?师:是第二象限角,如何表示?解:(1)是第二象限角,900+k×3600<<1800+k×3600(kZ) 1800+k×7200<2<3600+k×72002是第三或第四象限的角,或角的终边在y轴的非正半轴上。(2),处理:先将k取几个具体的数看一下(k=0,1,2,3),再归纳出以下规律:当时,是第一象限的角;当时,是第三象限的角。是第一或第三象限的角。说明:配以图形加以说明。(3)学生练习后教师讲解并配以图形说明。(是第一或第二或第四象限的角)进一步求是第几象限的角(是第三象限的
20、角),学生练习,教师校对答案。三、例题小结1 要注意某一区间内的角和象限角的区别,象限角是由无数各区间角组成的;2 要学会正确运用不等式进行角的表述同时要会以k取不同的值讨论型如=a+k×1200(kZ)所表示的角所在的象限。四、课堂练习练习2若的终边在第一、三象限的角平分线上,则的终边在y轴的非负半轴上.练习3若的终边与600角的终边相同,试写出在(00,3600)内,与角的终边相同的角。 (200,1400,2600)1200 y O x2500(备用题)练习4如右图,写出阴影部分(包括边界)的角的集合,并指出-950012,是否是该集合中的角。(| 1200+k×36
21、002500+k×3600,kZ;是)探究活动经过5小时又25分钟,时钟的分针、时针各转多少度?五、作业A组: 1与 终边相同的角的集合是_,它们是第_象限的角,其中最小的正角是_,最大负角是_ 2在0o360o范围内,找出下列各角终边相同的角,并指出它们是哪个象限的角:(1)265 (2)1000o (3)843o10 (4)3900oB组3写出终边在x轴上的角的集合。4写出与下列各角终边相同的角的集合,并把集合中适合不等式360o360o的元素写出来:(1)60o (2)75o (3) 824o30 (4) 475o (5) 90o (6) 270o (7) 180o (8) 0
22、o C组:若 是第二象限角时,则 , , 分别是第几象限的角?4-1.1.2弧度制(1)教学目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集一一对应关系的概念。教学过程:一、回忆(复习)度量角的大小第一种单位制角度制的定义。 二、提出课题:弧度制另一种度量角的单位制 它的单位是rad 读作弧度orC2rad1radrl=2roAAB 定义:长度等于半径长的弧所对的圆心角称为1弧度的角。 如图:ÐAOB=1rad ÐAOC=2rad 周角=2prad 1 正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是02 角a的弧度数的绝对值 (为弧
23、长,为半径)3 用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。三、角度制与弧度制的换算 抓住:360°=2prad 180°=p rad 1°= 例一 把化成弧度 解: 例二 把化成度 解: 注意几点:1度数与弧度数的换算也可借助“计算器”中学数学用表进行; 2今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦 3一些特殊角的度数与弧度数的对应值应该记住(见课本P9表) 4应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角
24、的集合与实数的集合之间建立一种一一对应的关系。正角零角负角正实数零负实数 任意角的集合 实数集R四、练习(P11 练习1 2) 例三 用弧度制表示:1°终边在轴上的角的集合 2°终边在轴上的角的集合 3°终边在坐标轴上的角的集合 解:1°终边在轴上的角的集合 2°终边在轴上的角的集合 3°终边在坐标轴上的角的集合 五、 小结:1弧度制定义 2与弧度制的互化六、作业:4-1.1.2弧度制(1)教学目的:加深学生对弧度制的理解,逐步习惯在具体应用中运用弧度制解决具体的问题。教学过程:一、复习:弧度制的定义,它与角度制互化的方法。 二、由公
25、式: 比相应的公式简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 例一 利用弧度制证明扇形面积公式其中是扇形弧长,是圆的半径。oRS 证: 如图:圆心角为1rad的扇形面积为:l 弧长为的扇形圆心角为 比较这与扇形面积公式 要简单 例二 直径为20cm的圆中,求下列各圆心所对的弧长 解: : : oAB 例三 如图,已知扇形的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积。解:设扇形的半径为r,弧长为,则有 扇形的面积例四 计算 解: 例五 将下列各角化成0到的角加上的形式 解:R=4560 例六 求图中公路弯道处弧AB的长(精确到1m)图中长度单位为:m 解: 三、练习:四
26、、作业: 4-1.2.1任意角的三角函数(1)教学目的:知识目标: 1.掌握任意角的三角函数的定义;2.已知角终边上一点,会求角的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、 解决问题的能力。 德育目标: (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切
27、的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。公式一是本小节的另一个重点。 教学难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用他们的集合形式表示出来. 授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:初中锐角的三角函数是如何定义的?在RtABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。二、讲解新课: 1三角函数定义在直角坐标系中,设是一个任意角,终边上任意一点(除了原点)的坐标
28、为,它与原点的距离为,那么(1)比值叫做的正弦,记作,即;(2)比值叫做的余弦,记作,即;(3)比值叫做的正切,记作,即;(4)比值叫做的余切,记作,即;(5)比值叫做的正割,记作,即;(6)比值叫做的余割,记作,即说明:的始边与轴的非负半轴重合,的终边没有表明一定是正角或负角,以及的大小,只表明与的终边相同的角所在的位置; 根据相似三角形的知识,对于确定的角,六个比值不以点在的终边上的位置的改变而改变大小;当时,的终边在轴上,终边上任意一点的横坐标都等于,所以与无意义;同理,当时,与无意义;除以上两种情况外,对于确定的值,比值、分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以
29、角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。2三角函数的定义域、值域函 数定 义 域值 域注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合.(2) 是任意角,射线OP是角的终边,的各三角函数值(或是否有意义)与ox转了几圈,按什么方向旋转到OP的位置无关.(3)sin是个整体符号,不能认为是“sin”与“”的积.其余五个符号也是这样.(4)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r”同为正值. 所不同的是,锐角三角函数是以边的比来
30、定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆.3例题分析例1已知角的终边经过点,求的六个函数制值。解:因为,所以,于是; ; 例2求下列各角的六个三角函数值:(1); (2); (3) 解:(1)因为当时,所以, , , 不存在, 不存在。(2)因为当时,所以, ,
31、, 不存在, 不存在。(3)因为当时,所以, , 不存在, ,不存在, 例3已知角的终边过点,求的六个三角函数值。解:因为过点,所以, 当; ;当; ;4三角函数的符号由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:正弦值对于第一、二象限为正(),对于第三、四象限为负();余弦值对于第一、四象限为正(),对于第二、三象限为负();正切值对于第一、三象限为正(同号),对于第二、四象限为负(异号)说明:若终边落在轴线上,则可用定义求出三角函数值。 为正 全正为正 为正5诱导公式由三角函数的定义,就可知道:终边相同的角三角函数值相同。即有:,其中,这组公式的作用是可把任意角的三角函数值问
32、题转化为02间角的三角函数值问题三、巩固与练习1 确定下列三角函数值的符号:(1); (2); (3); (4)2 求函数的值域解: 定义域:cosx¹0 x的终边不在x轴上 又tanx¹0 x的终边不在y轴上当x是第象限角时, cosx=|cosx| tanx=|tanx| y=2 ,|cosx|=-cosx |tanx|=-tanx y=-2 , |cosx|=-cosx |tanx|=tanx y=0四、小 结:本节课学习了以下内容:1任意角的三角函数的定义; 2三角函数的定义域、值域;3三角函数的符号及诱导公式。五、课后作业: 补充:1已知点,在角的终边上,求、的值
33、。2已知角a的终边经过P(4,-3),求2sina+cosa的值解:由定义 : sina=- cosa= 2sina+cosa=-六、板书设计: 4-1.2.1任意角的三角函数(2)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值; 3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。 能力目标:掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。 德育目标:学习转化的思想,培养学生严谨治学、一丝不苟的科学精神; 教学重点:正弦、余弦、正切线的概念。教学难点:正弦、余弦、正
34、切线的利用。 授课类型:新授课教学模式:讲练结合教 具:多媒体、实物投影仪教学过程:一、复习引入:1三角函数的定义及定义域、值域:练习1:已知角的终边上一点,且,求的值。解:由题设知,所以,得,从而,解得或当时, ;当时,;当时,2三角函数的符号:练习2:已知且,(1)求角的集合;(2)求角终边所在的象限;(3)试判断的符号。3诱导公式:练习3:求下列三角函数的值:(1), (2), (3) 二、讲解新课: 当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示三角函数线。1单位圆:圆心在圆点,半径等于单位长的圆叫做单位圆。2有向线段:坐标轴是规定了方向的直线,那么与之平行的线段
35、亦可规定方向。规定:与坐标轴方向一致时为正,与坐标方向相反时为负。3三角函数线的定义:设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点,过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.()()()()由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有, ,我们就分别称有向线段为正弦线、余弦线、正切线。说明:三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂
36、足;正切线由切点指向与的终边的交点。三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的为负值。三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。4例题分析:例1作出下列各角的正弦线、余弦线、正切线。(1); (2); (3); (4)解:图略。例2.利用三角函数线比较下列各组数的大小:1° 与 2° tan与tan 3° cot与cotABoT2T1 S2 S1P2P1 M2 M1 S1 解: 如图可知: tan tan cot cot例3利用单位圆寻找适合下列条件的0°到360°的角xyoTA210°3
37、0°xyoP1P21° sina 2° tana 解: 1° 2° 30°a150° 30°a90°或210°a270°例4利用单位圆写出符合下列条件的角的范围。(1); (2); (3)且;(4); (5)且答案:(1);(2);(3);(4);(5)三、巩固与练习四、小 结:本节课学习了以下内容:1三角函数线的定义; 2会画任意角的三角函数线;3利用单位圆比较三角函数值的大小,求角的范围。五、课后作业: 补充:1利用余弦线比较的大小; 2若,则比较、的大小; 3分别根据下列条件,写
38、出角的取值范围: (1) ; (2) ; (3)六、板书设计: 4-1.2.1任意角的三角函数(3)教学目的:知识目标:1.理解三角函数定义. 三角函数的定义域,三角函数线.2.理解握各种三角函数在各象限内的符号.3.理解终边相同的角的同一三角函数值相等. 能力目标:1.掌握三角函数定义. 三角函数的定义域,三角函数线.2.掌握各种三角函数在各象限内的符号.3.掌握终边相同的角的同一三角函数值相等. 授课类型:复习课教学模式:讲练结合教 具:多媒体、实物投影仪教学过程:一、 复习引入:1、三角函数定义. 三角函数的定义域,三角函数线,各种三角函数在各象限内的符号.诱导公式第一组.2.确定下列各
39、式的符号(1)sin100°·cos240° (2)sin5+tan53. .x取什么值时,有意义?4若三角形的两内角a,b满足sinacosb0,则此三角形必为( )A锐角三角形 B钝角三角形 C直角三角形 D以上三种情况都可能5若是第三象限角,则下列各式中不成立的是( )A:sina+cosa0 B:tana-sina0C:cosa-cota0 D:cotacsca06已知q是第三象限角且,问是第几象限角?二、 讲解新课: 1、求下列函数的定义域:(1); (2)2、已知,则q为第几象限角?3、(1) 若在第四象限,试判断sin(cos)cos(sin)的符号
40、;(2)若tan(cos)cot(sin)>0,试指出所在的象限,并用图形表示出的取值范围. 4、求证角为第三象限角的充分必要条件是证明:必要性:是第三象限角,充分性:sin0,是第三或第四象限角或终边在轴的非正半轴上tan0,是第一或第三象限角.sin0,tan0都成立.为第三象限角.5 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°三、 巩固与练习1 求函数的值域2 设a是第二象限的角,且的范围.四、小 结: 五、课后作业:1、利用单位圆中的三角函数线,确定下列各角的取值范围:(1)
41、 sin<cos; (2) |sin|<|cos| .2、3、角的终边上的点P与A(a,b)关于x轴对称,角的终边上的点Q与A关于直线y=x对称.求sinesc+tancot+seccsc的值.六、板书设计:4-1.2.2同角三角函数的基本关系(1)教学目的:知识目标: 1.能根据三角函数的定义导出同角三角函数的基本关系式; 2.掌握三种基本关系式之间的联系;3.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。能力目标: (1)牢固掌握同角三角函数的八个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力;(2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的
42、能力; 德育目标:训练三角恒等变形的能力,进一步树立化归思想方法;教学重点:同角三角函数的基本关系式教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:1任意角的三角函数定义:设角是一个任意角,终边上任意一点,它与原点的距离为,那么:,2当角分别在不同的象限时,sin、cos、tg、ctg的符号分别是怎样的?3背景:如果,A为第一象限的角,如何求角A的其它三角函数值;4问题:由于的三角函数都是由x、y、r 表示的,则角的六个三角函数之间有什么关系?二、讲解新课: (一)同角三角函数的
43、基本关系式:(板书课题:同角的三角函数的基本关系)1. 由三角函数的定义,我们可以得到以下关系:(1)倒数关系:(2)商数关系:(3)平方关系:2. 给出右图,你能说明怎样利用它帮助我们记忆三角函数的基本关系吗?(1)在对角线上的两个三角函数值的乘积等于1,有倒数关系。(2)带有阴影的三个倒置三角形中,上面两个三角函数值的平方和等于下面顶点上的三角函数值的平方。有平方关系。(3)六边形上任意一个顶点上的函数值等于与它相邻的两个顶点上的函数值的乘积。可演化出商数关系。说明:注意“同角”,至于角的形式无关重要,如等;注意这些关系式都是对于使它们有意义的角而言的,如;对这些关系式不仅要牢固掌握,还要
44、能灵活运用(正用、反用、变形用),如:, , 等。3例题分析:例1(1)已知,并且是第二象限角,求(2)已知,求解:(1),又是第二象限角,即有,从而, (2), ,又, 在第二或三象限角。当在第二象限时,即有,从而,;当在第四象限时,即有,从而,总结:1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。2. 解题时产生遗漏的主要原因是:没有确定好或不去确定角的终边位置;利用平方关系开平方时,漏掉了负的平方根。例2已知为非零实数,用表示解:,即有,又为非零实数,为象限角。当在第
45、一、四象限时,即有,从而, ;当在第二、三象限时,即有,从而, 例3已知(),求解: , 即,又,即,又,为象限角。当在第一、四象限时,即有,;当在第二、三象限时,即有,4总结解题的一般步骤:确定终边的位置(判断所求三角函数的符号);根据同角三角函数的关系式求值。三、巩固与练习第27页 练习1,2,3,4四、小 结:本节课学习了以下内容:1同角三角函数基本关系式及成立的条件;2根据一个角的某一个三角函数值求其它三角函数值;3在以上的题型中:先确定角的终边位置,再根据关系式求值。如已知正弦或余弦,则先用平方关系,再用其它关系求值;若已知正切或余切,则可构造方程组来求值。五、课后作业:六、板书设计
46、:4-1.2.2同角三角函数的基本关系(2)教学目的:知识目标:根据三角函数关系式进行三角式的化简和证明;能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。(2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力; 德育目标:训练三角恒等变形的能力,进一步树立化归思想方法;教学重点:同角三角函数的基本关系式教学难点:如何运用公式对三角式进行化简和证明。授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:1同角三角函数的基本关系式。(1)倒数关系:,(2)商数关系:,(3)平方关系:,(练习)已知,求2tancos= ,co
47、tsec= ,(sec+tan)·( )=1二、讲解新课: 例1化简解:原式例2化简解:原式 例3、已知,求解: 强调(指出)技巧:1°分子、分母是正余弦的一次(或二次)齐次式 2°“化1法” 例4、已知,求解:将 两边平方,得: 例5、已知解:由题设: ()例6、已知,求 解:1° 由 由 联立: 2° 例7、已知 求解:sin2a + cos2a = 1 化简,整理得:当m = 0时,当m = 8时,三、巩固与练习1:已知12 sin+5 cos=0,求sin、cos的值. 解:12 sin+5 cos=0 sin= cos,又则( cos
48、)2+=1,即=cos=± 2.已知,求(1);原式=(2);原式=说明:(1)为了直接利用,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以,将分子、分母转化为的代数式;(2)可利用平方关系,将分子、分母都变为二次齐次式,再利用商数关系化归为的分式求值;34.已知sectg=5,求sin。解1:sectg=5=5×1=5(sec2tg2)=5(sec+tg)(sectg),故 sec+tg=1/5, 则sec=13/5,tg=12/5;sin=tg·cos=解2:由已知:则5.已知,求值;解:可求分析:本题关键时灵活地多次运用条件从而结合同角三角函数关系式达到降次求解的目标;小结:化简三角函数式,化简的一般要求是:(1)尽量使函数种类最少,项数最少,次数最低;(2)尽量使分母不含三角函数式;(3)根式内的三角函数式尽量开出来;(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学毕业论文(设计)致谢9篇
- 2025年企业管理资料金融企业劳动合同示范文文档范本
- 毕业论文(设计)致谢9篇
- 2025年金融机构外汇流动资金借款合同范本
- 《2025全面的新员工个人劳动合同模板集》
- 一、启动Excel建立新工作簿教学设计-2025-2026学年初中信息技术沪科版八年级上册-沪科版
- 预应力工程施工进度动态管控方案
- 防腐保温层后期维护与修补技术方案
- 天然气管道试压技术实施方案
- 重庆市九龙坡区招聘社区工作者考试真题2024
- 电力运行维护管理办法
- 2025年甘肃省高考政治真题卷含答案解析
- 专职安全生产管理人员综合类C证习题(含答案)
- 2025年市场监管总局机关公开遴选公务员面试模拟题及答案
- 注册安全工程师考试道路运输和其他安全安全生产实务(初级)试卷与参考答案
- 客户关系管理课件 第1章 客户关系管理概述
- 数学-湖南省长郡中学2025-2026学年高二上学期暑假作业检测(开学)试题+答案
- 构建餐饮油烟共治格局的策略及实施路径
- 《MySQL数据库教程》课件第一章数据库概述
- 2025年“中央八项规定”精神学习知识竞赛测试题库及答案
- 2025年四川医疗卫生事业单位《卫生公共基础知识》考试真题及答案
评论
0/150
提交评论