




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、chapter 1 the real number system 1.3. completeness axiom of r1.16 definition let reand e. (i).the set e is said to be bounded above if there is an rms.t mafor all ea. (ii).a number m is called an upper bound of the set e if mafor all ea. (iii).a number s is called a supremum of the set e if s satisf
2、ies the following conditions (1) if easa, (2) if m is an upper bound of e then ms. remark the supremum is also called the least upper bound. 1.17: exampleif e=0,1, prove that 1 is a supremum of e. proof. 1. 1 ,0, 1eaa. 2. let m be an upper bound then mafor all 1 , 0a)1 ,01(1m. we derive the result.
3、1.18: remarkif a set has one upper bound, it has infinitely many upper bounds proof:. let e be a subset of r. let mafor all ea. then m is an upper bound. let rbb,0then m+b is also an upper bound. so, e has infinitely many upper bounds. 1.19 . theorem. let e be a nonempty subset of r. then the least
4、upper bound of e is unique if it exists. proof. suppose that 21& ssare the least upper bounds of e.then 21& ssare upper bounds of e. 1221&ssss21ss. notation the supremum is also called least upper bound . we use supe to denote the supremum of nonempty set e. 1.20. theorem approximation p
5、roperty eeres u pa n d,exists. theneaanisthere,0s.t eaesupsup. proof:. suppose the conclusion is false. there is an 0such that .,supeaea. es u pis an upper bound. eesupsup0eas.t eaesupsup1.21. theorem if nehas a supremum, then eesupproof. let supe=s.by approximation property, thereex0s.t sxs01. if s
6、x0then eesupis obvious. if sxs01, then ex1s.t 001100 xsxxsxx. 1. 1,0101xxnxx. 2. 1)1(1,0101ssxxsxxs. it is a contradiction. ees u p complete axiom of r every nonempty subset e of r that is bounded above, then e has the least upper bound. . 1.22 :archimedean principle nnbarba0,s.t bna. proof: 1. if b
7、a, then take n=1. 2. if ab , let ;bkanke. ee,1. ekabk,e is bounded above. by completeness of r, supe exists. baeeeee)1( s u p1su p)21.1t heoremby(suptake n=supe+1 1.23: example. let ,.41,21, 1aand ,.87,43,21bprove that supa=supb =1proof. 1. 1;02nann or n11,0 , 1, 2 , . .2nxxn. 1is an upper bound. le
8、t m be another bound. .1s u p1210am2. ;211nnbnnnn,21111is an upper bound of b.let m be an upper bound of bto show 1m. suppose not011mmby archimedean principle, there exists nnsuch that mn11, mn121for some nn. mmnnnnn212)1(1212211m is an upper bound. 1m1s u p b well-order principle ene,e has a least
9、element (ie.eas.t exxa,) 1.24. theorem (density of rational) let rba,satisfy ab, then there is a rational number c s.t ac0, let .;nkbnkeby archimedean principlee. by well-order principlee has a least element, says0k . .).(1:0bnmeiemkmlet nmq. we must show that aqb. qb is obvious, now we show that aq
10、.11)(00bqaaqqnknnkabba2. if b 0. qcs.t a+kc0. (i.e. e is bounded above and below.) let e be a set of r. we define ;exxe. 1.28. theorem ere,. 1. supe exists inf(-e) exists in fact supe= -inf(-e) 2. infe existssup(-e) exists in fact infe= -sup(-e) proof: 1. supe exists. now we show that supe=inf(-e).s
11、how that 1. -supe is a lower bound of e. 2. if s is a lower bound of esesup. 1. es u pis an upper bound of eexexexex,su p,s u pesu pis a lower bound of e 2. suppose that s is a lower bound of -esuppose notesessupsupon the other hand sxexsx,hence, -s is a upper bound of eby 1.& 2, eeesup)inf(&
12、;)inf(. the proof of converse is similar. remark. the largest lower bound is also called infimum. remark. the completeness axiom of r is equivalent to “ every nonempty, bounded below subset of r has the infimum ”.1.29. theorem .i n fi n f,s u ps u p,ababbarbaif bbinfandsupexist. hence, baabsupsupinf
13、infproof: 1. suppose sup b exists .,su p.,su paxbxbabxbxais bounded above & supb is an upper bound of a by complete axiom of r, .supsup&supbaa2.s ppose thatinfb exists. .,i n f,i n faxbxbabxbxais bounded below & infb is an lower bound of a. by complete axiom of r, baainfinf&:inf. def
14、: s u p, i n f1.4 functions, countability and the algebra of sets. definition let a & b be two sets of r. a function f is a relation between a & b s.t f assigns each element x of a to a unique bydefinition baf :f is called 1-1 if )()(yfxfyxdef: baf :f is called onto if axby,s.tf(x)=y definit
15、ion 1.34: let e be s a set of r. 1. e is said be finite if eor enfnnn.2, 1:&,.3,2, 1s.t f is 1-1 & onto. 2. e is called countably infinite if enf :s.t f is 1-1 & onto. 3. e is called countable if e is finite or countably infinite. 4. e is called uncountable if e is not countable 1.35. theorem . the open interval (0,1) is uncountable pf: suppose (0,1) is countable. then there is a list for (0,1 ) says .0.0.0.0321333231323222121312111nnnnaaaaaaaaaaa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蓄电池的常用故障
- 沪教版九年级物理第一学期第七章7.2欧姆定律 电阻说课稿
- 2025年药物鉴别专项考核试题
- 湖南省娄底市新化县桑梓镇中心学校九年级化学上册《7.2 燃料的合理开发与利用》说课稿1 (新版)新人教版
- 2025届湖南省长沙市高考物理热身练习试题(含解析)
- 葡萄酒贸易知识培训课件
- 文库发布:葡萄酒课件
- 小班的奥数题目及答案
- 常熟初一历史月考试卷及答案
- 向日葵英文题目及答案
- 2025年高考生物甘肃卷试题答案解读及备考指导(精校打印)
- 2025北师大版三年级数学上册 第二单元 测量(二) 单元教学设计
- 2025年云南文山交通运输集团公司招聘考试笔试试卷【附答案】
- 沉香种植可行性研究报告
- 光纤通信施工难点措施
- 资质备案管理办法
- GB/T 45760-2025精细陶瓷粉体堆积密度测定松装密度
- 职业技能鉴定机构备案表(空表)
- 补肾养血膏方联合PRP治疗肝肾亏虚型膝骨关节炎的临床疗效观察
- 医疗机构依法执业自查
- 专项复习:相似三角形折叠问题(分层练习)(综合练)
评论
0/150
提交评论