生物化学重点内容(一)_第1页
生物化学重点内容(一)_第2页
生物化学重点内容(一)_第3页
生物化学重点内容(一)_第4页
生物化学重点内容(一)_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 生物化学重点内容生物化学重点内容第一章  概述一、生物化学的发展史:1叙述(静态)生物化学阶段:是生物化学发展的萌芽阶段,该阶分析和研究组成生物体的各种化学成分,以及生物体的分泌物和排泄物。2动态生物化学阶段:是生物化学蓬勃发展的阶段,这一阶段段的主要工作是研究生物体内各种主要化学物质的代谢途径。3分子生物学阶段:是现代生物化学阶段,这一阶段的主要研究任务是探讨各种生物大分子的结构和功能之间的关系。二、生物化学研究的主要方面:1生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成。2物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收中间代谢排泄。其中

2、,中间代谢过程是在细胞内进行的最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢等几方面的内容。3细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。4生物分子的结构与功能:对生物大分子结构的理解,揭示结构与功能之间的关系。5遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。三、生物化学的研究:分离和分析(定性和定量)四:复习及答题原则:宏观把握;前后联系;从研究和应用着眼;兼顾所报专业。第二章  蛋白质化学

3、一、氨基酸:1结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-氨基酸。2分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类: 非极性中性氨基酸(8种); 极性中性氨基酸(7种); 酸性氨基酸(Glu和Asp); 碱性氨基酸(Lys、Arg和His)。记忆歌诀1.人体八种必须氨基酸 “假设来借一两本淡色书”(异亮氨酸、亮氨酸、色氨酸、苏氨酸、苯丙氨酸、赖氨酸、蛋氨酸、缬氨酸)。2.生糖、生酮、生糖兼生酮氨基酸:>生酮+生糖兼生酮=“一两色素本来老”(异亮氨酸、亮氨酸、

4、色氨酸、苏氨酸、苯丙氨酸、 赖氨酸、酪氨酸),其中生酮氨基酸为“亮赖”;除了这7个氨基酸外,其余均为生糖氨基酸。3.酸性氨基酸:天谷酸天上的谷子很酸,(天冬氨酸、谷氨酸)4.碱性氨基酸:赖精组5. 色老笨-芳香族氨基酸在280nm处有最大吸收峰(色氨酸、酪氨酸、苯丙氨酸),顺序一定要记清,色>酪>苯丙。6.一碳单位的来源“肝胆阻塞死” (甘氨酸、蛋氨酸、组氨酸、色氨酸、丝氨酸)。是Val,因其疏水性最强!二、 肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的-羧基与另一分子氨基酸的-氨基经缩水而形成的特殊酰胺键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱

5、水而产生的不完整结构,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端C端。三、肽键平面(肽单位):肽键具有部分双键的性质,不能自由旋转;使得组成肽键的四个原子及其相邻的两个碳原子处在同一个平面上,构成刚性平面结构,称为肽键平面(肽单位)。例题1: 根据下面给出的数据,判断二肽Glu-Ala和二肽Ala-Lys能否用等电聚焦电泳方法分离。氨基酸PK(-COOH)PK(-NH3+)PK(R)Ala2.349.69Glu2.199.674.25Lys2.188.9510.53答<1>计算二肽Glu-Ala的等电点:PI(4.25+2.34)

6、/23.3 <2>计算二肽Ala-Lys的等电点:PI(9.69+10.53)/210.11 <3> 它们的等电点不同,故能用等电聚焦电泳方法分离。注意:单一氨基酸的解离顺序:-COOH >-NH3+ > R形成肽后,计算PI,一般是取相近的两个求平均。 例题2:用下列实验数据推导某寡肽的一级结构并简述判断的理由。<1>完全酸水解后产生的aa组成为:Ala、Arg、2Ser、Lys、Phe、Met、Pro<2>用DNFB处理并水解得到DNP-Ala和-DNP-Lys<3>羧肽酶A和B都对此肽不作用<4>用CNB

7、r处理获得2个片段,其中一个片段含有Pro、Trp、Ser<5>用糜蛋白酶作用产生3个片段,1个含有Pro、Ser;另1个含有Met、Trp;最后一个含有Phe、Lys、Ser、Ala、Arg<6>用胰蛋白酶处理产生3个片段,1个含有Ala、Arg;另1个含有Lys、Ser;最后一个含有Phe、Trp、Met、Ser、Pro条件判断结论<1>完全酸水解后产生的aa组成为:Ala、Arg、2Ser、Lys、Phe、Met、Pro可能有Trp被酸破坏,因此这可能是个9肽,浏览一下下面,果然是9肽Ala、Arg、2Ser、Lys、Phe、Met、Pro、Trp&l

8、t;2>用DNFB处理并水解得到DNP-Ala和-DNP-LysN端AA是Ala,Lys处于中间Ala-(Arg、2Ser、Lys、Phe、Met、Pro、Trp)<3>羧肽酶A和B都对此肽不作用C端是Pro,羧肽酶A:Arg、Lys、Pro除外羧肽酶B:仅Arg、LysAla-(Arg、2Ser、Lys、Phe、Met、Trp)-Pro<4>用CNBr处理获得2个片段,其中一个片段含有Pro、Trp、SerCNBr:MetAla-(Arg、Ser、Lys、Phe)-Met-(Ser 、Trp)-Pro<5>用糜蛋白酶作用产生3个片段,1个含有Pro、

9、Ser;另1个含有Met、Trp;最后一个含有Phe、Lys、Ser、Ala、Arg糜蛋白酶:(Trp、Tyr、Phe)Ala-(Arg、Ser、Lys)-Phe -Met-Trp-Ser-Pro<6>用胰蛋白酶处理产生3个片段,1个含有Ala、Arg;另1个含有Lys、Ser;最后一个含有Phe、Trp、Met、Ser、Pro胰蛋白酶:(Arg、Lys)Ala-Arg-Ser-Lys-Phe -Met-Trp-Ser-Pro天然存在的活性肽生物体内存在大量的多肽和寡肽,其中有很多具有很强的生物活性,称活性肽。生物的生长、发育、细胞分化、大脑功能、免疫、生殖、衰老、病变等都涉及到活

10、性肽。活性肽是细胞内部、细胞间、器官间信息沟通的主要化学信使。很多激素、抗生素都属于肽类或肽的生物。1、谷胱甘肽GluCysGly广泛存在于动、植、微生物细胞内,在细胞内参与氧化还原过程,清除内源性过氧化物和自由基,维护蛋白质活性中心的巯基处于还原状态。2、短杆菌肽(抗生素)由短杆菌产生的10 肽环。抗革兰氏阳性细菌,临床用于治疗化浓性病症。LOrnLLeuDPheLProLValLOrnLLeuDPheLProLVal3、脑啡肽(5 肽)已发现几十种Met脑啡肽: TyrGlyGlyPheMetLeu脑啡肽: TyrGlyGlyPheLeu具有镇痛作用。四、蛋白质的分子结构:蛋白质的分子结构

11、被人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。蛋白质分子量= aa 数目*1101一级结构:指多肽链中氨基酸的排列顺序,由肽键维系。蛋白质的一级结构决定其空间结构。2二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型:(1)-螺旋:其结构特征为:主链骨架围绕中心轴盘绕形成右手螺旋;螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm; 相邻螺旋圈之间形成许多氢键; 侧链基团位于螺旋的外侧。影响-螺旋形成的因素主要是: 侧链基团较大的氨基酸残基; 连续带相同电荷的氨基酸残基; 脯氨酸残基。(2)-折叠:其结构特征为: 若

12、干条肽链或肽段平行或反平行排列成片; 所有肽键的C=O和NH形成链间氢键; 侧链基团分别交替位于片层的上、下方。(3)-转角:多肽链180°回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。(4)无规卷曲:主链骨架无规律盘绕的部分。3三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫键。4四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。例3:IgG分子由四条肽链组成,因此具有四级结构。错例4:、维持球蛋白三级结构稳定的

13、最重要的键或作用力是( ) A.二硫键 B.盐键 C.氢键 D.范德华力 E.疏水键 答案:E 考点:维持蛋白质结构的化学键 解析:维持蛋白质一级结构的主要是肽键,二级结构主要是氢键,三级和四级结构靠次级键维持,这其中最主要的是疏水作用,疏水键、盐键、氢键、范德华力、二硫键都参与三级结构的形成,要区分这些化学键的含义:蛋白质中众多疏水基团之间的作用力即为疏水键;酸性和碱性氨基酸可带电荷,正负电荷相互作用形成盐键;与氢共用电子对形成的键为氢键;半胱氨酸之间可以二硫键结合。五、 蛋白质的理化性质:1两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性

14、质。蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。2蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶胶的两个重要因素。3蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。4蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。例题5:不能发生双缩脲反应的是A二肽 B

15、三肽 C多肽 D蛋白质 A例题6:不能够将蛋白质中二硫键拆分的试剂为A巯基乙醇 B过甲酸 C碘代乙酸 D尿素 D例题7: 从生物功能上看A-螺旋>无规卷曲 B-折叠>无规卷曲C-螺旋>-折叠 D无规卷曲>-螺旋 D例题8:蛋白质的生物功能直接由其_来决定。AAA序列 B肽链个数 C构象 D构型 C例题9:对蛋白质的二级结构-螺旋起破坏作用的AA是AAla BCys CMet DPro D六、蛋白质的分离与纯化:1盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。盐析时,

16、溶液的pH在蛋白质的等电点处效果最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。2电泳:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。3透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。4层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量。5超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用

17、来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比。例10:如何从血液中分离纯化清蛋白(MW:68500,PI4.9)?请举出两种分离纯化的方法,简要说明各种方法的基本原理及基本流程。 考点:蛋白质的分离与纯化 解析:分离纯化蛋白质的方法有多种,应利用蛋白质物理、化学性质的差异,选择合适的方法,将其分离纯化。如本题中可利用清蛋白分子量与其他蛋白不同的性质,采用凝胶过滤层析的方法,也可利用蛋白质沉淀的性质,采用盐析的方法,或利用其两性游离及等电点、分子大小等与其他蛋白的差异采用电泳的方法等。 答案:1.凝胶过滤层析:层析柱内填充带有网孔的凝胶颗粒,根据清蛋白分子量,选用合适大小网孔的凝胶,

18、将血液加于柱顶端,以其所含的清蛋白球蛋白为例,清蛋白分子小进入凝胶孔内,球蛋白分子量大于网孔的分离上限,不进入孔内而直接流出,清蛋白因在孔内被滞留随后流出,从而清蛋白与球蛋白得以分离,而血液中含有的其他杂蛋白同理因其与清蛋白的分子大小的差异,可以与清蛋白分离,最终得到纯化的清蛋白。 2.盐析:硫酸铵等中性盐因能破坏蛋白质在溶液中稳定存在的两大因素,故能使蛋白质发生沉淀,不同蛋白质分子颗粒大小不同,亲水程度不同,盐析所需要的盐浓度也不同,从而将蛋白质得以分离。如用硫酸铵分离纯化清蛋白,在半饱和的硫酸铵溶液中,球蛋白即可从血清中沉淀析出而除掉,再加硫酸铵溶液至饱和,则清蛋白沉淀析出,从而清蛋白可以

19、分离出来,再用透析,除去清蛋白中所含的硫酸铵,清蛋白即可被纯化。七、氨基酸顺序分析:蛋白质多肽链的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤:1. 分离纯化蛋白质,得到一定量的蛋白质纯品;2. 取一定量的样品进行完全水解,再测定蛋白质的氨基酸组成;3. 分析蛋白质的N-端和C-端氨基酸;4. 采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溴化氰)将蛋白质处理为若干条肽段;5. 分离纯化单一肽段;6. 测定各条肽段的氨基酸顺序。一般采用Edman降解法,用异硫氰酸苯酯进行反应,将氨基酸降解后,逐一进行测定;7. 至少用两种不同的方法处理蛋白质,分别得到其肽段的氨基酸顺序;8. 将

20、两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。例11:已知某多肽组成是 Ala5、Lys1,Phe1 与 2,4-二硝基氟苯(DNFB)反应后再酸解产生一个游离的 DNFB-Ala,胰蛋白酶解得一个三肽:Lys1,Ala2和一个四肽Ala3、Phe1,整个多肽经糜蛋白酶解产生一个六肽和一个游离氨基酸,写出这个多肽的一级结构 考点:氨基酸序列分析 解析:1.多肽与 DNFB反应再酸解产生一个游离的DNFB-Ala,说明此肽的 N 末端氨基酸残基是Ala。 2.胰蛋白酸水解 Lys、Arg 羧基侧的肽键,题中多肽无Arg。且被此酸水解成一个三肽和一个四肽,说明第 3 位氨基

21、酸残基是 Lys。 3.糜蛋白酶水解 Phe、Tyr、Trp 羧基侧的肽键,此多肽中只存在Phe,且被此酶水解成一个六肽和一个游离氨基酸,说明其第6位氨基酸残基是 Phe。 4.此多肽一共有 7 个氨基酸残基组成5 个Ala,1 个Lys,1 个 Phe,所以剩余的2、4、5、7 位全是 Ala。故此多肽一级结构为(从N 端到 C端):Ala-Ala-Lys-Ala-Ala-Phe-Ala第三章 酶和维生素一、酶的概念:酶(enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多

22、功能酶)三大类。二、酶的分子组成:酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子两部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关。与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白以共价键牢固结合并与酶的催化活性有关的耐热低分子有机化合物称为辅基。三、辅酶与辅基的来源及其生理功用:辅酶与辅基的生理功用主要是:(1) 运载氢原子或电子,参与氧化还原反应。(2) 运载反应基团,如酰基、氨基、烷基、羧基及一碳单位等,参与基团转移。大部分的辅酶与辅基衍生于维生素。维生素(vitamin)是指一类维持细胞

23、正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VitD、VitE和VitK四种;水溶性维生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,叶酸等。1. TPP:即焦磷酸硫胺素,由硫胺素(Vit B1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中-酮酸的氧化脱羧反应。2. FMN和FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物。FMN或FAD通常作为脱氢酶的辅基,在酶促反应中作

24、为递氢体(双递氢体)。3. NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶,Co )和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶,Co),是Vit PP的衍生物。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单递氢体。4. PLP:磷酸吡哆醛和磷酸吡哆胺,是Vit B6的衍生物。磷酸吡哆醛和磷酸吡哆胺可作为氨基转移酶,氨基酸脱羧酶,半胱氨酸脱硫酶等的辅酶。5. CoA:泛酸(遍多酸)在体内参与构成辅酶A(CoA)。CoA中的巯基可与羧基以高能硫酯键结合,在糖、脂、蛋白质代谢中起传递酰基的作用,是酰化酶的辅酶。6. 生物素:是羧化酶的辅基,在体内参与C

25、O2的固定和羧化反应。7. FH4:由叶酸衍生而来。四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。8. Vit B12衍生物:Vit B12分子中含金属元素钴,故又称为钴胺素。Vit B12在体内有多种活性形式,如5´-脱氧腺苷钴胺素、甲基钴胺素等。其中,5´-脱氧腺苷钴胺素参与构成变位酶的辅酶,甲基钴胺素则是甲基转移酶的辅酶。四、金属离子的作用:1. 稳定构象:稳定酶蛋白催化活性所必需的分子构象;2. 构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心;3. 连接作用:作为桥梁,将底物分子与酶蛋白螯合起来。五、酶的活性中心:酶分子上具有一定空间构象的部位,

26、该部位化学基团集中,直接参与将底物转变为产物的反应过程,这一部位就称为酶的活性中心。参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产物的,称为催化基团,这两类基团统称为活性中心内必需基团。在酶的活性中心以外,也存在一些化学基团,主要与维系酶的空间构象有关,称为酶活性中心外必需基团。六、酶促反应的特点:1具有极高的催化效率:酶的催化效率可比一般催化剂高1061020倍。酶能与底物形成ES中间复合物,从而改变化学反应的进程,使反应所需活化能阈大大降低,活化分子的数目大大增加,从而加速反应进行。2具有高度的专一性:一种酶只作用于一种或一类化合物,以促进一

27、定的化学变化,生成一定的产物,这种现象称为酶作用的特异性。  (1)绝对特异性:一种酶只能作用于一种化合物,以催化一种化学反应,称为绝对特异性,如琥珀酸脱氢酶。(2)相对特异性:一种酶只能作用于一类化合物或一种化学键,催化一类化学反应,称为相对特异性,如脂肪酶。(3)立体异构特异性:一种酶只能作用于一种立体异构体,或只能生成一种立体异构体,称为立体异构特异性,如L-精氨酸酶。3作用条件温和:酶一般适合的作用条件为37,pH 7,和一个大气压。4. 活性可以调节:如代谢物可调节酶的催化活性,对酶分子的共价修饰可改变酶的催化活性,也可通过改变酶蛋白的合成来改变其催化活性。5.

28、酶易变性失活:酶是蛋白质,在一些理化因子存在下会变性失活。七、酶促反应的机制:1中间复合物学说与诱导契合学说:酶催化时,酶活性中心首先与底物结合生成一种酶-底物复合物(ES),此复合物再分解释放出酶,并生成产物,即为中间复合物学说。当底物与酶接近时,底物分子可以诱导酶活性中心的构象以生改变,使之成为能与底物分子密切契合的构象,这就是诱导契合学说。2与酶的高效率催化有关的因素:趋近效应与定向作用;张力作用;酸碱催化作用;共价催化作用;酶活性中心的低介电区(表面效应)。八、酶促反应动力学:酶促反应动力学主要研究酶催化的反应速度以及影响反应速度的各种因素。在探讨各种因素对酶促反应速度的影响时,通常测

29、定其初始速度来代表酶促反应速度,即底物转化量5%时的反应速度。1底物浓度对反应速度的影响:(1)底物对酶促反应的饱和现象:由实验观察到,在酶浓度不变时,不同的底物浓度与反应速度的关系为一矩形双曲线,即当底物浓度较低时,反应速度的增加与底物浓度的增加成正比(一级反应);此后,随底物浓度的增加,反应速度的增加量逐渐减少(混合级反应);最后,当底物浓度增加到一定量时,反应速度达到一最大值,不再随底物浓度的增加而增加(零级反应)。(2)米氏方程及米氏常数:根据上述实验结果,Michaelis & Menten 于1913年推导出了上述矩形双曲线的数学表达式,即米氏方程:其中,Vmax为最大反应

30、速度,Km为米氏常数。(3)Km和Vmax的意义:当时,Km=S。Km等于酶促反应速度达最大值一半时的底物浓度。Km可以反映酶与底物亲和力的大小,即Km值越小,则酶与底物的亲和力越大;反之,则越小。Km可用于判断反应级数:当S<0.01Km时,=(Vmax/Km)S,反应为一级反应,即反应速度与底物浓度成正比;当S>100Km时,=Vmax,反应为零级反应,即反应速度与底物浓度无关;当0.01Km<S<100Km时,反应处于零级反应和一级反应之间,为混合级反应。Km是酶的特征性常数:在一定条件下,某种酶的Km值是恒定的,因而可以通过测定不同酶(特别是一组同工酶)的Km值

31、,来判断是否为不同的酶。Km可用来判断酶的最适底物:当酶有几种不同的底物存在时,Km值最小者,为该酶的最适底物。Km可用来确定酶活性测定时所需的底物浓度:当S=10Km时,=91%Vmax,为最合适的测定酶活性所需的底物浓度。Vmax可用于酶的转换数的计算:当酶的总浓度和最大速度已知时,可计算出酶的转换数,即单位时间内每个酶分子催化底物转变为产物的分子数。(4)Km和Vmax的测定:主要采用Lineweaver-Burk双倒数作图法和Hanes作图法。2酶浓度对反应速度的影响:当反应系统中底物的浓度足够大时,酶促反应速度与酶浓度成正比, 即=kE。3温度对反应速度的影响:一般来说,酶

32、促反应速度随温度的增高而加快,但当温度增加达到某一点后,由于酶蛋白的热变性作用,反应速度迅速下降。酶促反应速度随温度升高而达到一最大值时的温度就称为酶的最适温度。酶的最适温度与实验条件有关,因而它不是酶的特征性常数。低温时由于活化分子数目减少,反应速度降低,但温度升高后,酶活性又可恢复。4pH对反应速度的影响:观察pH对酶促反应速度的影响,通常为一钟形曲线,即pH过高或过低均可导致酶催化活性的下降。酶催化活性最高时溶液的pH值就称为酶的最适pH。人体内大多数酶的最适pH在6.58.0之间。酶的最适pH不是酶的特征性常数。5抑制剂对反应速度的影响:凡是能降低酶促反应速度,但不引起酶分子变性失活的

33、物质统称为酶的抑制剂。按照抑制剂的抑制作用,可将其分为不可逆抑制作用和可逆抑制作用两大类。(1)不可逆抑制作用:抑制剂与酶分子的必需基团共价结合引起酶活性的抑制,且不能采用透析等简单方法使酶活性恢复的抑制作用就是不可逆抑制作用。如果以E作图,可得到一组斜率相同的平行线,随抑制剂浓度的增加而平行向右移动。酶的不可逆抑制作用包括专一性抑制(如有机磷农药对胆碱酯酶的抑制)和非专一性抑制(如路易斯气对巯基酶的抑制)两种。(2)可逆抑制作用:抑制剂以非共价键与酶分子可逆性结合造成酶活性的抑制,且可采用透析等简单方法去除抑制剂而使酶活性完全恢复的抑制作用就是可逆抑制作用。如果以E作图,可得到一组随抑制剂浓

34、度增加而斜率降低的直线。可逆抑制作用包括竞争性、反竞争性和非竞争性抑制几种类型。 竞争性抑制:抑制剂与底物竞争与酶的同一活性中心结合,从而干扰了酶与底物的结合,使酶的催化活性降低,这种作用就称为竞争性抑制作用。其特点为:a.竞争性抑制剂往往是酶的底物类似物或反应产物;b.抑制剂与酶的结合部位与底物与酶的结合部位相同;c.抑制剂浓度越大,则抑制作用越大;但增加底物浓度可使抑制程度减小;d.动力学参数:Km值增大,Vm值不变。典型的例子是丙二酸对琥珀酸脱氢酶(底物为琥珀酸)的竞争性抑制和磺胺类药物(对氨基苯磺酰胺)对二氢叶酸合成酶(底物为对氨基苯甲酸)的竞争性抑制。 反竞争性抑制:抑制剂不能与游离

35、酶结合,但可与ES复合物结合并阻止产物生成,使酶的催化活性降低,称酶的反竞争性抑制。其特点为:a.抑制剂与底物可同时与酶的不同部位结合;b.必须有底物存在,抑制剂才能对酶产生抑制作用;c.动力学参数:Km减小,Vm降低。 非竞争性抑制:抑制剂既可以与游离酶结合,也可以与ES复合物结合,使酶的催化活性降低,称为非竞争性抑制。其特点为:a.底物和抑制剂分别独立地与酶的不同部位相结合;b.抑制剂对酶与底物的结合无影响,故底物浓度的改变对抑制程度无影响;c.动力学参数:Km值不变,Vm值降低。6激活剂对反应速度的影响:能够促使酶促反应速度加快的物质称为酶的激活剂。酶的激活剂大多数是金属离子,如K+、M

36、g2+、Mn2+等,唾液淀粉酶的激活剂为Cl-。九、酶的调节:可以通过改变其催化活性而使整个代谢反应的速度或方向发生改变的酶就称为限速酶或关键酶。酶活性的调节可以通过改变其结构而使其催化活性发生改变,也可以通过改变其含量来改变其催化活性,还可以通过以不同形式的酶在不同组织中的分布差异来调节。1酶结构的调节:通过对现有酶分子结构的影响来改变酶的催化活性。这是一种快速调节方式。(1)变构调节:又称别构调节。某些代谢物能与变构酶分子上的变构部位特异性结合,使酶的分子构发生改变,从而改变酶的催化活性以及代谢反应的速度,这种调节作用就称为变构调节。具有变构调节作用的酶就称为变构酶。凡能使酶分子变构并使酶

37、的催化活性发生改变的代谢物就称为变构剂。当变构酶的一个亚基与其配体(底物或变构剂)结合后,能够通过改变相邻亚基的构象而使其对配体的亲和力发生改变,这种效应就称为变构酶的协同效应。变构剂一般以反馈方式对代谢途径的起始关键酶进行调节,常见的为负反馈调节。变构调节的特点: 酶活性的改变通过酶分子构象的改变而实现;酶的变构仅涉及非共价键的变化;调节酶活性的因素为代谢物;为一非耗能过程;无放大效应。(2)共价修饰调节:酶蛋白分子中的某些基团可以在其他酶的催化下发生共价修饰,从而导致酶活性的改变,称为共价修饰调节。共价修饰方式有:磷酸化-脱磷酸化等。共价修饰调节一般与激素的调节相联系,其调节方式为级联反应

38、。共价修饰调节的特点为:酶以两种不同修饰和不同活性的形式存在;有共价键的变化;受其他调节因素(如激素)的影响;一般为耗能过程;存在放大效应。(3)酶原的激活:处于无活性状态的酶的前身物质就称为酶原。酶原在一定条件下转化为有活性的酶的过程称为酶原的激活。酶原的激活过程通常伴有酶蛋白一级结构的改变。酶原分子一级结构的改变导致了酶原分子空间结构的改变,使催化活性中心得以形成,故使其从无活性的酶原形式转变为有活性的酶。酶原激活的生理意义在于:保护自身组织细胞不被酶水解消化。2酶含量的调节:是指通过改变细胞中酶蛋白合成或降解的速度来调节酶分子的绝对含量,影响其催化活性,从而调节代谢反应的速度。这是机体内

39、迟缓调节的重要方式。(1)酶蛋白合成的调节:酶蛋白的合成速度通常通过一些诱导剂或阻遏剂来进行调节。凡能促使基因转录增强,从而使酶蛋白合成增加的物质就称为诱导剂;反之,则称为阻遏剂。常见的诱导剂或阻遏剂包括代谢物、药物和激素等。(2)酶蛋白降解的调节:如饥饿时,精氨酸酶降解减慢,故酶活性增高,有利于氨基酸的分解供能。3同工酶的调节:在同一种属中,催化活性相同而酶蛋白的分子结构,理化性质及免疫学性质不同的一组酶称为同工酶。同工酶在体内的生理意义主要在于适应不同组织或不同细胞器在代谢上的不同需要。因此,同工酶在体内的生理功能是不同的。乳酸脱氢酶同工酶(LDHs)为四聚体,在体内共有五种分子形式,即L

40、DH1(H4),LDH2(H3M1),LDH3(H2M2),LDH4(H1M3)和LDH5(M4)。心肌中以LDH1含量最多,LDH1对乳酸的亲和力较高,因此它的主要作用是催化乳酸转变为丙酮酸再进一步氧化分解,以供应心肌的能量。在骨骼肌中含量最多的是LDH5,LDH5对丙酮酸的亲和力较高,因此它的主要作用是催化丙酮酸转变为乳酸,以促进糖酵解的进行。十、酶的命名与分类:1酶的命名:主要有习惯命名法与系统命名法两种,但常用者为习惯命名法。2酶的分类:根据1961年国际酶学委员会(IEC)的分类法,将酶分为六大类: 氧化还原酶类:催化氧化还原反应;转移酶类:催化一个基团从某种化合物至另一种化合物;水

41、解酶类:催化化合物的水解反应;裂合酶类:催化从双键上去掉一个基团或加上一个基团至双键上;异构酶类:催化分子内基团重排;合成酶类:催化两分子化合物的缔合反应。 (氧转水、裂异合)例1: 某生物化学家发现并纯化了一种新的酶,纯化过程及结果如下表:操作程序 总蛋白(mg) 活性(U)1.粗提取 20000 40000002.盐析沉淀 5000 30000003.pH沉淀 4000 10000004.离子交换层析200 8000005.亲和层析 50 7500006.排阻层析 45 675000根据表中结果:a)计算每一步纯化程序后酶的比活性。b)指出哪一步对酶的纯化最有效。c)指出哪一步对酶的纯化最

42、无效。d)表中结果能否说明该酶已被纯化?若估计酶的纯化程度还需要做些什么?e)若该单纯酶由682个氨基酸残基组成,该酶的分子量约为多少? 考点:酶活力测定及酶的分离纯化。解析:a)酶含量须用酶活力来表示,即在1 分钟内转化1 微摩尔的底物所需的酶量为一个单位,而每毫克酶蛋白所具有的酶活力,称比活力,用单位/毫克蛋白表示。故每一步纯化程序后酶的比活性为1.4000000/20000200(U/mg)2.3000000/5000600(U/mg)3.1000000/4000250(U/mg)4.800000/2004000(U/mg)5.750000/5015000(U/mg)6.675000/4

43、515000(U/mg)b)对同一种酶来说,比活力愈高,表明酶愈纯,从第4 步到第5 步酶的比活力明显提高,故亲和层析一步对酶的纯化最有效。c)从第5步到第6步,酶的比活力无变化,所以第6步对酶的纯化最无效。d)因为第5 步和第6 步的比活力一样,也就是说经过排阻层析后酶的纯度无变化,所以该酶基本上已被纯化。e)一般每个氨基酸残基含一个氮原子,原子量为14,而每种蛋白质分子的含氮量都约为16%故,设蛋白质分子量为x,则14×682/x16%,x=59675。例2:从组织提取酶时,最理想的结果是( ) A.蛋白质的产量最多,酶单位数最大B.酶单位数最大,比活力最高C.需要补充的辅酶量最

44、大D.Km 值最低E.比活力最高答案:B考点:酶的活力测定及其活力的含义。解析:提取酶时,酶含量常用酶活力表示:即在1分钟内转化1umol 底物所需的酶量为一个单位,而每毫克酶蛋白所具有的酶活力,称比活力。对同一种酶来说,比活力越高,表明酶愈纯,提取酶时,最理想的结果是酶量多,纯度高,所以也就是酶活力单位最大,比活力最高。底物饱和百分数=v/Vmax=s/(Km+s)第四章生物氧化一、生物氧化的概念和特点:物质在生物体内氧化分解并释放出能量的过程称为生物氧化。与体外燃烧一样,生物氧化也是一个消耗O2,生成CO2和H2O,并释放出大量能量的过程。但与体外燃烧不同的是,生物氧化过程是在37,近于中

45、性的含水环境中,由酶催化进行的;反应逐步释放出能量,相当一部分能量以高能磷酸酯键的形式储存起来。二、线粒体氧化呼吸链:在线粒体中,由若干递氢体或递电子体按一定顺序排列组成的,与细胞呼吸过程有关的链式反应体系称为呼吸链。这些递氢体或递电子体往往以复合体的形式存在于线粒体内膜上。主要的复合体有:1 复合体(NADH-泛醌还原酶):由一分子NADH还原酶(FMN),两分子铁硫蛋白(Fe-S)和一分子CoQ组成,其作用是将(NADH+H+)传递给CoQ。铁硫蛋白分子中含有非血红素铁和对酸不稳定的硫。其分子中的铁离子与硫原子构成一种特殊的正四面体结构,称为铁硫中心或铁硫簇,铁硫蛋白是单电子传递体。泛醌(

46、CoQ)是存在于线粒体内膜上的一种脂溶性醌类化合物。分子中含对苯醌结构,可接受二个氢原子而转变成对苯二酚结构,是一种双递氢体。2 复合体(琥珀酸-泛醌还原酶):由一分子琥珀酸脱氢酶(FAD),两分子铁硫蛋白和两分子Cytb560组成,其作用是将FADH2传递给CoQ。细胞色素类:这是一类以铁卟啉为辅基的蛋白质,为单电子传递体。细胞色素可存在于线粒体内膜,也可存在于微粒体。存在于线粒体内膜的细胞色素有Cytaa3,Cytb(b560,b562,b566),Cytc,Cytc1;而存在于微粒体的细胞色素有CytP450和Cytb5。3 复合体(泛醌-细胞色素c还原酶):由两分子Cytb(分别为Cy

47、tb562和Cytb566),一分子Cytc1和一分子铁硫蛋白组成,其作用是将电子由泛醌传递给Cytc。4 复合体(细胞色素c氧化酶):由一分子Cyta和一分子Cyta3组成,含两个铜离子,可直接将电子传递给氧,故Cytaa3又称为细胞色素c氧化酶,其作用是将电子由Cytc传递给氧。三、呼吸链成分的排列顺序:由上述递氢体或递电子体组成了NADH氧化呼吸链和琥珀酸氧化呼吸链两条呼吸链。1NADH氧化呼吸链:其递氢体或递电子体的排列顺序为:NAD+ FMN (Fe-S)CoQb(Fe-S) c1 c aa3 1/2O2 。丙酮酸、-酮戊二酸、异柠檬酸、苹果酸、-羟丁酸、-羟脂酰CoA和谷氨酸脱氢后

48、经此呼吸链递氢。2琥珀酸氧化呼吸链:其递氢体或递电子体的排列顺序为: FAD (Fe-S)CoQb(Fe-S) c1 c aa3 1/2O2 。琥珀酸、3-磷酸甘油(线粒体)和脂酰CoA脱氢后经此呼吸链递氢。例题:下列哪一项不是呼吸链的组成部分: A. NADH B. NADPH C. FADH2 D. FMNH2 E.Cytaa3 B四、生物体内能量生成的方式:1氧化磷酸化:在线粒体中,底物分子脱下的氢原子经递氢体系传递给氧,在此过程中释放能量使ADP磷酸化生成ATP,这种能量的生成方式就称为氧化磷酸化。2底物水平磷酸化:直接将底物分子中的高能键转变为ATP分子中的末端高能磷酸键的过程称为底

49、物水平磷酸化。五、氧化磷酸化的偶联部位:每消耗一摩尔氧原子所消耗的无机磷的摩尔数称为P/O比值。当底物脱氢以NAD+为受氢体时,P/O比值约为3;而当底物脱氢以FAD为受氢体时,P/O比值约为2。故NADH氧化呼吸链有三个生成ATP的偶联部位,而琥珀酸氧化呼吸链只有两个生成ATP的偶联部位。六、氧化磷酸化的偶联机制:目前公认的机制是1961年由Mitchell提出的化学渗透学说。这一学说认为氧化呼吸链存在于线粒体内膜上,当氧化反应进行时,H+通过氢泵作用(氧化还原袢)被排斥到线粒体内膜外侧(膜间腔),从而形成跨膜pH梯度和跨膜电位差。这种形式的能量,可以被存在于线粒体内膜上的ATP合酶利用,生

50、成高能磷酸基团,并与ADP结合而合成ATP。在电镜下,ATP合酶分为三个部分,即头部,柄部和基底部。但如用生化技术进行分离,则只能得到F0(基底部+部分柄部)和F1(头部+部分柄部)两部分。ATP合酶的中心存在质子通道,当质子通过这一通道进入线粒体基质时,其能量被头部的ATP合酶催化活性中心利用以合成ATP。七、氧化磷酸化的影响因素:1ATP/ADP比值:ATP/ADP比值是调节氧化磷酸化速度的重要因素。ATP/ADP比值下降,可致氧化磷酸化速度加快;反之,当ATP/ADP比值升高时,则氧化磷酸化速度减慢。2甲状腺激素:甲状腺激素可以激活细胞膜上的Na+,K+-ATP酶,使ATP水解增加,因而

51、使ATP/ADP比值下降,氧化磷酸化速度加快。3药物和毒物:(1)呼吸链的抑制剂:能够抑制呼吸链递氢或递电子过程的药物或毒物称为呼吸链的抑制剂。能够抑制第一位点的有异戊巴比妥、粉蝶霉素A、鱼藤酮等;能够抑制第二位点的有抗霉素A和二巯基丙醇;能够抑制第三位点的有CO、H2S和CN-、N3-。其中,CN-和N3-主要抑制氧化型Cytaa3-Fe3+,而CO和H2S主要抑制还原型Cytaa3-Fe2+。(2)解偶联剂:不抑制呼吸链的递氢或递电子过程,但能使氧化产生的能量不能用于ADP的磷酸化的试剂称为解偶联剂。其机理是增大了线粒体内膜对H+的通透性,使H+的跨膜梯度消除,从而使氧化过程释放的能量不能

52、用于ATP的合成反应。主要的解偶联剂有2,4-二硝基酚。(3)氧化磷酸化的抑制剂:对电子传递和ADP磷酸化均有抑制作用的药物和毒物称为氧化磷酸化的抑制剂,如寡霉素。八、高能磷酸键的类型:生物化学中常将水解时释放的能量>20kJ/mol的磷酸键称为高能磷酸键,主要有以下几种类型:1磷酸酐键:包括各种多磷酸核苷类化合物,如ADP,ATP等。2混合酐键:由磷酸与羧酸脱水后形成的酐键,主要有1,3-二磷酸甘油酸等化合物。3烯醇磷酸键:见于磷酸烯醇式丙酮酸中。4磷酸胍键:见于磷酸肌酸中,是肌肉和脑组织中能量的贮存形式。磷酸肌酸中的高能磷酸键不能被直接利用,而必须先将其高能磷酸键转移给ATP,才能供

53、生理活动之需。这一反应过程由肌酸磷酸激酶(CPK)催化完成。九、线粒体外NADH的穿梭:胞液中的3-磷酸甘油醛或乳酸脱氢,均可产生NADH。这些NADH可经穿梭系统而进入线粒体氧化磷酸化,产生H2O和ATP。1磷酸甘油穿梭系统:这一系统以3-磷酸甘油和磷酸二羟丙酮为载体,在两种不同的-磷酸甘油脱氢酶的催化下,将胞液中NADH的氢原子带入线粒体中,交给FAD,再沿琥珀酸氧化呼吸链进行氧化磷酸化。因此,如NADH通过此穿梭系统带一对氢原子进入线粒体,则只得到2分子ATP。2苹果酸穿梭系统:此系统以苹果酸和天冬氨酸为载体,在苹果酸脱氢酶和谷草转氨酶的催化下。将胞液中NADH的氢原子带入线粒体交给NA

54、D+,再沿NADH氧化呼吸链进行氧化磷酸化。因此,经此穿梭系统带入一对氢原子可生成3分子ATP。第五章糖代谢一、糖类的生理功用: 氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。 作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。二、糖的无氧酵解:糖的无氧酵解(EMP)是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。

55、其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。糖的无氧酵解代谢过程可分为四个阶段:1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖6-磷酸葡萄糖6-磷酸果糖1,6-双磷酸果糖(F-1,6-BP)。这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP磷酸二羟丙酮 + 3-磷酸甘油醛 和磷酸二羟丙酮3-磷酸甘油醛。3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱

56、氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛1,3-二磷酸甘油酸3-磷酸甘油酸2-磷酸甘油酸磷酸烯醇式丙酮酸丙酮酸。此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。丙酮酸激酶为关键酶。4还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。即丙酮酸乳酸。三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论