




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?答:使用高斯消去法时,在消元过程中可能出现a: =0的情况,这时消去法无法进行;即时主元素a;=0,但相对很小时,用其做除数,会导致其它元素数量级的严重增长和舍入误差的扩散,最后也使得计算不准确。因此高斯消去法需要选主元,以保证计算的进行和计算的准确性。当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。 计算时一般选择列主元消去法。2、 高斯消去法与LU分解有什么关系?用它们解线性方程组Ax = b有何不同? A要满足什么 条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中
2、一个为上三角矩阵U, 个为下三角矩阵 L。用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。A需要满足的条件是,顺序主子式(1,2,n-1 )不为零。3、楚列斯基分解与 LU分解相比,有什么优点?楚列斯基分解是 LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。平方根法在分解过程中元素的数量级不会增长,切对角元素恒为正数,因此,是一个稳定的算法。5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三
3、种常用的向量范数。 向量范数定义见p53,符合3个运算法则。正定性齐次性 三角不等式设X为向量,则三种常用的向量范数为:(第3章p53,第5章p165)nllxlli 八 |Xi|i 3n1l|x|2 = C Xi2)2i壬iixii:=ma:xixi i7、 何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A = (aij )的三种范数| A| i, II A| 2, IIA| J | A| i与| A| 2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。正定条件齐次条件三角不等式相容条件矩阵的算子范数有l|A|il|A|2l|A|:从定义可知,|A |i更容易计算。&什
4、么是矩阵的条件数?如何判断线性方程组是病态的?答:设A为非奇异阵,称数cond(A)v =|aMa|v ( v=1,2,血)为矩阵A的条件数当cond(A) . 1时,方程是病态的。9、满足下面哪个条件可判定矩阵接近奇异?(1 )矩阵行列式的值很小。(2 )矩阵的范数小。(3 )矩阵的范数大。(4)矩阵的条件数小。(5 )矩阵的元素绝对值小。接近奇异阵的有(1)、(2)注:矩阵的条件数小说明 A是良态矩阵。 矩阵的元素绝对值小,不能说明行列式的值小等。10、判断下列命题是否正确:(1 )只要矩阵A非奇异,则用顺序消去法或直接LU分解可求得线性方程组 Ax = b的解。答:错误,主元位置可能为0
5、,导致无法计算结果。(2 )对称正定的线性方程组总是良态的。答:正确。(3)一个单位下三角矩阵的逆仍为单位下三角矩阵。答:正确。(4)如果A非奇异,则Ax = b的解的个数是由右端向量 b的决定的。答:正确。解释:若 A|b与A的秩相同,贝U A有唯一解。若不同,则 A无解。(5)如果三对角矩阵的主对角元素上有零元素,则矩阵必奇异。(6)范数为零的矩阵一定是零矩阵。答:正确。(7)奇异矩阵的范数- -定是零。答:错误,« .一可以不为0。(8) 如果矩阵对称,则II A| 1 = | All 8。 答:根据范数的定义,正确。(9) 如果线性方程组是良态的,则高斯消去法可以不选主元。答
6、:错误,不选主元时,可能除数为0。(10) 在求解非奇异性线性方程组时,即使系数矩阵病态, 用列主元消去法产生的误差也很 小。答:错误。对于病态方程组,选主元对误差的降低没有影响。(11) II A | i = | AT| 。 答:根据范数的定义,正确。(12 )若A是n n的非奇异矩阵,则1cond(A) = cond( A )。答:正确。A是nn的非奇异矩阵,则 A存在逆矩阵。cond( A) =|A| |aj|根据条件数的定义有:'con d(A) =|A制(A”| =|A卜 |A| =|A卜眉|习题I a11、设A是对称阵且an =0,经过高斯消去法一步后,A约化为步后a: I
7、A2称矩阵。证明:设对称矩阵ana11a12 .d n Ia12a22.an 2.a1na2n.anna12a1nai2ai2则经过1次高斯校区法后,有ai1an2a1n a12ai1a11a22an2所以a:aa1n aa2na12耳1ann-a1n a12a11ai2aln-a12 a12an2ai2a1 nai1a11a1 nai2anna1 na1 na11=a12an2;22-a12a11ai2an2旦2 amal1a1 nai2anna1 na1nanaii所以A2为对称矩阵。2、设A是对称正定矩阵,经过高斯消去法一步后,步后A 约化为 A = (aj )n,其中 A = (aj
8、)n ,A =(a)n -4 ;证明:(1)A的对角元素4 0 (i=1,2,,n) ;( 2)A2是对称正定矩阵;(1)依次取Xj =(0,0,,0,1,0,0):, i =1,2/ ,n,则因为A是对称正定矩阵, i所以有 aii 二 x: Ax 0 0(2) A2中的元素满足a(2> = aq 可1" , (i,j=2,3,n),又因为A是对称正定aii矩阵,满足 ay =aji, i, j =1,2,n,所以 a(2)=aqaiiaijajiaii a jiaiiaii二 a(2),即A是对称矩阵。3、设Lk为指标为k的初等下三角矩阵(除第k列对角元以下元素外,Lk和单
9、位阵I相同),即iiLk =mk+,k imn,ki 一求证当i,j k时,Lk=lijLklij也是一个指标为k的初等下三角矩阵,其中Iij为初等置换矩 阵。4、 试推导矩阵A的Crout分解A=LU的计算公式,其中L为下三角矩阵,U为单位上三角矩 阵。本题不推导。参见书上例题。Pi47页。5、设Ux =d,其中U为三角矩阵。(i )就U为上及下三角矩阵推导一般的求解公式,并写出算法(2)计算解三角方程组 Ux二d的乘除法次数(3)设U为非奇异矩阵,试推导求 U的计算公式本题考查求解公式的一般方法,可从第n个元素开始,逐步计算n-i,i时对应的求解公式。解法,略。6、证明:(1)如果A是对称
10、正定矩阵,则 A'也是对称正定矩阵(2) 如果A是对称正定矩阵,则 A可以唯一地写成 A二UL,其中L是具有正对角元的下 三角矩阵均是对称正定矩阵的性质。应予以记住。7、用列主元消去法解线性方程组12冶-3x2 3x3 =15三18x3x2 -x3 = -15x-i x2 x3 = 6并求出系数矩阵A的行列式的值12-33A= -183-1.1 1 1 一12-3315A|b=-183-1-151116使用列主元消去法,有-12-3315 1A|b =-183-1-151116 J-183-1-1512-33151116 一-183-1-150-175371731106186 一-18
11、3-1-1571731=061860-175-3-18311571731061861006666217 一A的行列式为-66方程组的解为X1=1,x2=2,x3=3&用直接三角分解(Doolittle分解)求线性方程组的解111小 X1x?X3 9456111c7 : x2x3 =83451X1' x? '' 2 X3 8本题考查解:LU分解。31'2-|131_21511161360909575402 -1 0 0 0 111-12-10000-12-10,b =00 0-12-10JD00-12 一0 一Ax二b,其中9、用追赶法解三对角方程组A =
12、O解:追赶法实际为 LU分解的特殊形式。设 U为、单位上三角矩阵。有(1)计算的递推公式I = G / bj = -1/2 = -0.5j 二c2/(b2-a2 +) =-1/(2-(-1) (-0.5) = -2/33 =C3/(b3 -a3'2-1/(2 -(-1) (一2/3) =3/4':4 -C4/(ba4 订)=1/(2-(一1) (一3/4) =4/5(2) 解 Ly=fy- = f1 / bj =1/2y2 =(f2 72力)/山2 a2+) =(0-(一1) (1/2)/(2-(一1) (一0.5)=1/3y3 =(f3 a3y2)/(b3-a3Q=(0-(-
13、1) (1/3)/(2-(-1) (-2/3) =1/ 4y4 =(f4-a4y3)/(b4-a4 飞)=(0-(-1)(1/4)/(2-(-1)(-3/4) =1/5y5 =5a5y4)/(b5虫5*)=(0-(一1)(1/5)/(2-(一1)(一 4/5)=1/6(3) 解 UX=yX5 二 y5 = 1/ 6x4 二 y4 - :4花=1/5-(-4/5) 1/6 =1/3X3 二 y3 - :3x4 =1/4-(-3/4) 1/3 =1/2X2 =y2 -、X3 =1/3-(-2/3) 1/2 =2/3为- x2 =2-(一1/2) 2/3 =5/610、用改进的平方根法解方程组2-1
14、 1反 14_1-23X2=53 1 一'X3 一i 6本题明确要求使用平方根法进行求解。实际考查的LDU分解。见P15710723X1, X2, X399911、下列矩阵能否分解为 LU (其中L为单位下三角阵,U为上三角阵)?若能分解,那么分解是否唯一。12 3111126A =2 41,B =2 2 1,° =25 1546 713 3 1 _16 15 46一LU分解存在的条件一个可逆矩阵可以进行 LU分解当且仅当它的所有子式都非零。如果要求其中的L矩阵(或U矩阵)为单位三角矩阵,那么分解是唯一的。同理可知,矩阵的LDU可分解条件也相同,并且总是唯一的。即使矩阵不可逆
15、,LU仍然可能存在。实际上,如果一个秩为k的矩阵的前k个顺序主子式不为零,那么它就可以进行 LU分解,但反之则不然。解:因为A的一、二、三阶顺序主子式分别为1, 0,-10,所以A不能直接分解为三 角阵的乘积,但换行后可以。因为B的一、二、三阶顺序主子式分别为1, 0, 0,所以B不能分解为三角阵的 乘积。因为C的一、二、三阶顺序主子式分别为1, 5, 1,所以C能够分解为三角阵的 乘积,并且分解是唯一的。12、设0.6 0.5_ A = I卫.1 0.3计算A的行范数,列范数,2-范数及F-范数。本题考查的是矩阵范数的疋义及求法行范数 0.6+0.5=1.1列范数 0.5+0.3=0.82-
16、范数的计算需要用到特征值,特征值的计算可以使用幕法进行计算,也可以直接求。A A的最大特征值为0.3690所以2-范数为0.6074F-范数 0.842613、求证:(a)妝|訣 |x|L 兰 n|x仁;(b)IIAUIWUINf。根据定义求证。憑=憎1人AA nillAll1!nn igUAL =-max(ATn兰 |1=送 Xi 兰 n maxxi =n xldi =12aijA)14、设Rn>n且非奇异,又设llxll为Rn上一向量范数,定义|x|p =|Px|。试证明IIXIp是Rn上向量的一种范数。根据向量范数的定义来证明:要求就有正定性,齐次性,三角不等式等性质。显然 IM
17、=IIPM ",网p = |pcx| =忖門=同|狐|X1 +X2|p =|P(X1 +X2)|=|PX1 +PX2|M|PXi| + |PX2 =|xi|p+|x2|p,从而 Hp 是 Rn上向量的一种范数。15、设A三Rn n为对称正定,定义1x|a =(Ax,x)2,试证明|x A是Rn上向量的一种范数。根据向量范数的定义来证明:要求就有正定性,齐次性,三角不等式等性质。1 显然 xA = (Ax,x)2 二、xtAx 01 1|cx|A =(ACX,CX)2 = Jc2(XTAx) =C(Ax, x)2 =c|Xa1M +X2IL =(A(X1 +X2),(X1 +X2)2
18、= J(X1 +X2)T A(X1 +X2) 兰 JxAX1 + Jx2TAX2 = Ik |a +妝2 |Amaxx=0所以得证16、设A为非奇异矩阵,求证IIaXI= max x=° AA xmaxy =A £=0lylminy=0Aylyl一、,2人扎 1、217、矩阵第一行乘以一数,成为A = |,证明当九=土一时,cond (AV-有最小值。1 1 _ 3本题考查条件数的计算co nd(A&=|A%|A 仁首先计算A的逆阵2A32|3,|乞2|3纠2,当-=_23,取得最小值为2=1 2 | |:'| ' | ,当 取值越大,则最小值为 2
19、从而 cond(A&= Amax:3|,2f ,又当V时,1cond (A)閃=(丁 +2) max卜一弓 2) 2 =7。9当小3时,1+ 2) maxfeh九cond(A):二(,2>= (卜2) 3扎综上所述,cond(A)閃=7时最小,这时=,即九18、设 aJ00"199 98,计算A的条件数cond(A)v (v=2,:)由A。1(999998可知,A98 99 ,从而|t_99-1004 T -4- (A ) (A )1-98 9999-98 99_ 19405-19602-1099-100_一 -1960219801 一r4 T4丸-1940519602kl -(A ) (A )=19602人19801 2 一 392061= 0 ,由s 100 99 1001(99 98 . |(99991980198_196021960219405 -19801-19602-19602'-19405-2 - 39206 仁 0 ,可得啊2 =|A*2 = J19603 + J384277608,从而cond(A)2 二 A2 A 2 =196
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红酒相关知识培训课件
- 红酒定制知识培训课程表课件
- 红色基因代代传课件
- 企业年度法律顾问服务合同协议
- 诗经国风郑风子衿课件
- 红楼梦第五十八回课件
- 红楼梦第九回课件
- 健康咨询与管理协议
- 诗经中齐风鸡鸣课件
- 诗经中的植物课件
- 人美版《书法练习与指导》四年级上册整册教案
- 汉字形旁分类及其组字表
- NY-T 4251-2022 牧草全程机械化生产技术规范
- 代建项目安全生产管理办法20191226
- YS/T 690-2009天花吊顶用铝及铝合金板、带材
- GB/T 26463-2011羰基合成脂肪醇
- 静脉治疗护理质量评价标准
- 连铸坯质量控制与缺陷控制课件
- 社会调查研究方法-课件
- 雕塑基础教学课件
- 沥青混合料低温弯曲试验2002363
评论
0/150
提交评论