


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.立体几何中的平行关系1已知m、n是两条不同直线,是两个不同平面,下列命题中的真命题是_如果m,n,mn,那么如果m,n,那么mn如果m,n,且m,n共面,那么mn如果mn,m,n,那么解析:m,n,m,n没有公共点又m,n共面,所以mn.答案:2已知m、n是不同的直线,、是不重合的平面,给出下列命题:若m,则m平行于平面内的无数条直线;若,m,n,则mn;若m,n,mn,则;若,m,则m.其中,真命题的序号是_(写出所有真命题的序号)解析:中,m,nmn或m,n异面,所以错误而其它命题都正确答案:3(2010年苏北四市调研)给出下列关于互不相同的直线m、l、n和平面、的四个命题:若m,lA,
2、点Am, 则l与m不共面;若m、l是异面直线,l,m,且nl,nm,则n;若l,m,则lm;若l,m,lmA,l,m,则.其中为真命题的是_解析:中若l,m,lm或l,m异面,所以错误而其它命题都正确答案:4(2009年高考福建卷改编)设m,n是平面内的两条不同直线;l1,l2是平面内的两条相交直线,则的一个充分而不必要条件是_m且l1ml1且nl2 m且n m且nl2解析:ml1,且nl2,又l1与l2是平面内的两条相交直线,而当时不一定推出ml1且nl2,可能异面答案: 5如图,ABCD为直角梯形,CCDA90°,AD2BC2CD,P为平面ABCD外一点,且PBBD.(1)求证:
3、PABD;(2)若PC与CD不垂直,求证:PAPD;(3)若直线l过点P,且直线l直线BC,试在直线l上找一点E,使得直线PC平面EBD.解:(1)证明:ABCD为直角梯形,ADABBD,ABBD,PBBD,ABPBB,AB,PB平面PAB,BD平面PAB,PA平面PAB,PABD.(2)证明:假设PAPD,取AD中点N,连结PN,BN,则PNAD,BNAD,AD平面PNB,得PBAD,又PBBD,得PB平面ABCD,PBCD.又BCCD,CD平面PBC,CDPC,与已知条件PC与CD不垂直矛盾PAPD.(3)在l上取一点E,使PEBC,连结BE,DE,PEBC,四边形BCPE是平行四边形,P
4、CBE,PC平面EBD,BE平面EBD,PC平面EBD.6如下图,在正方体ABCDA1B1C1D1中,M、N、P、Q分别为A1D1、A1B1、B1C1、C1D1的中点,求证:平面AMN平面PQDB.7如图,长方体ABCDA1B1C1D1中,AA1,AB1,AD2,E为BC的中点,点M为棱AA1的中点(1)证明:DE平面A1AE;(2)证明:BM平面A1ED.证明:(1)在AED中,AEDE,AD2,AEDE.A1A平面ABCD,A1ADE,DE平面A1AE.(2) 设AD的中点为N,连结MN、BN.在A1AD中,AMMA1,ANND,MNA1D,BEND且BEND,四边形BEDN是平行四边形,
5、BNED,平面BMN平面A1ED,BM平面A1ED.8如图在四面体SABC中,E、F、O分别为SA、SB、AC的中点,G为OC的中点,证明:FG平面BEO.9如图,四边形ABCD为矩形,BC平面ABE,F为CE上的点,且BF平面ACE.(1)求证:AEBE;(2)设点M为线段AB的中点,点N为线段CE的中点求证:MN平面DAE.证明:(1)因为BC平面ABE,AE平面ABE,所以AEBC,又BF平面ACE,AE平面ACE,所以AEBF,又BFBCB,所以AE平面BCE,又BE平面BCE,所以AEBE.(2)取DE的中点P,连结PA,PN,因为点N为线段CE的中点所以PNDC,且PNDC,又四边形ABCD是矩形,点M为线段AB的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育技术的创新发展与个性化设计的思维实践
- 教育大数据洞察市场精准营销
- 以教学为目的的数字技术与创意应用结合的实践研究
- 以实践为导向的终身学习体系设计策略
- 重复专利侵权培训课件
- 抖音商户运营经理直播库存同步制度
- 抖音商户短视频转化效果分析反馈制度
- 培训课件的布局要求
- 全球铀矿资源分布特点及2025年核能产业产业链分析报告
- 公交优先战略下2025年城市交通拥堵治理的公共交通运营效率研究
- T/CACE 009-2017清洁生产管理体系要求
- 2025年儿童心理学基础知识考试卷及答案
- 2024年内蒙古公安厅招聘警务辅助人员真题
- AI音乐概论知到智慧树期末考试答案题库2025年四川音乐学院
- 混凝土销售技能培训课件
- 《基于价值链的企业分拆上市动因及效果研究的国内外文献综述》6700字
- 顾问框架合同协议
- 2025小学道德与法治教师课标练习卷简答题100题及答案
- 吉林省2025年初三中考测试(一)生物试题含解析
- DB33T 1376-2024乡镇(街道)应急消防管理站建设与运行规范
- 无人机吊装作业安全管理
评论
0/150
提交评论