




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第1课时进门测判断下列结论是否正确(请在括号中打“”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角(×)(2)角的三角函数值与其终边上点p的位置无关()(3)不相等的角终边一定不相同(×)(4)终边相同的角的同一三角函数值相等()(5)若(0,),则tan >>sin .()(6)若为第一象限角,则sin cos >1.()作业检查阶段知识点梳理1角的概念(1)任意角:定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;分类:角按旋转方向分为正角、负角和零角(2)所有与角终边相同的角,连同角在内,构成的角的集
2、合是s|k·360°,kz(3)象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限2弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180° rad,1° rad,1 rad°.(3)扇形的弧长公式:l|·r,扇形的面积公式:slr|·r2.3任意角的三角函数任意角的终边与单位
3、圆交于点p(x,y)时,sin y,cos x,tan (x0)三个三角函数的初步性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin rcos rtan |k,kz4.三角函数线如下图,设角的终边与单位圆交于点p,过p作pmx轴,垂足为m,过a(1,0)作单位圆的切线与的终边或终边的反向延长线相交于点t.三角函数线有向线段mp为正弦线;有向线段om为余弦线;有向线段at为正切线.第2课时阶段训练题型一角及其表示例1(1)若k·180°45°(kz),则在()a第一或第三象限 b第一或第二象限c第二或第四象限 d第三或第四象限(2)已知
4、角的终边在如图所示阴影表示的范围内(不包括边界),则角用集合可表示为_答案(1)a(2)(2k,2k)(kz)解析(1)当k2n(nz)时,2n·180°45°n·360°45°,为第一象限角;当k2n1 (nz)时,(2n1)·180°45°n·360°225°,为第三象限角所以为第一或第三象限角故选a.(2)在0,2)内,终边落在阴影部分角的集合为,所求角的集合为 (kz)思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的
5、集合,然后通过对集合中的参数k赋值来求得所需的角(2)利用终边相同的角的集合s|2k,kz判断一个角所在的象限时,只需把这个角写成0,2)范围内的一个角与2的整数倍的和,然后判断角的象限(1)终边在直线yx上的角的集合是_(2)(2016·台州模拟)若角的终边与角的终边相同,则在0,2内终边与角的终边相同的角的个数为_答案(1)|k,kz(2)3解析(1)在(0,)内终边在直线yx上的角为,终边在直线yx上的角的集合为|k,kz(2)2k(kz),(kz),依题意02,kz,k,k0,1,2,即在0,2内与角的终边相同的角为,共三个题型二弧度制例2(1)(2016·舟山模拟
6、)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是_答案解析设圆半径为r,则圆内接正方形的对角线长为2r,正方形边长为r,圆心角的弧度数是.(2)已知扇形的圆心角是,半径是r,弧长为l.若100°,r2,求扇形的面积;若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数解slrr2××4.由题意知l2r20,即l202r,sl·r(202r)·r(r5)225,当r5时,s的最大值为25.当r5时,l202×510,2(rad)即扇形面积的最大值为25,此时扇形圆心角的弧度数为2 rad.思维升华应用弧度制解决问
7、题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形(1)将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是 ()a. b.c d(2)圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()a. b.c3 d.答案(1)c(2)d解析(1)将表的分针拨快应按顺时针方向旋转,为负角,故a、b不正确;又因为拨快10分钟,故应转过的角为圆周的.即为×2.(2)如图,等边三角形abc是半径为r的圆o的内接三角形,
8、则线段ab所对的圆心角aob,作omab,垂足为m,在rtaom中,aor,aom,amr,abr,lr,由弧长公式得.题型三三角函数的概念命题点1三角函数定义的应用例3(1)(2016·杭州模拟)若角的终边经过点p(,m)(m0)且sin m,则cos 的值为_(2)点p从(1,0)出发,沿单位圆逆时针方向运动弧长到达q点,则q点的坐标为 ()a. b.c. d.答案(1)(2)a解析(1)由题意知r,sin m,m0,m±,r2,cos .(2)由三角函数定义可知q点的坐标(x,y)满足xcos ,ysin.q点的坐标为(,)命题点2三角函数线例4函数ylg(2sin
9、x1)的定义域为_答案2k,2k)(kz)解析要使原函数有意义,必须有即如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为2k,2k) (kz)思维升华(1)利用三角函数的定义,已知角终边上一点p的坐标可求的三角函数值;已知角的三角函数值,也可以求出点p的坐标(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围(1)已知角的终边经过点(3a9,a2),且cos 0,sin >0.则实数a的取值范围是()a(2,3 b(2,3)c2,3) d2,3(2)满足cos 的角的集合为_答案(1)a(2)|2k2k,kz解析(1)cos 0,sin >
10、;0,角的终边落在第二象限或y轴的正半轴上2<a3.(2)作直线x交单位圆于c、d两点,连接oc、od,则oc与od围成的区域(图中阴影部分)即为角终边的范围,故满足条件的角的集合为|2k2k,kz6数形结合思想在三角函数中的应用典例(1)如图,在平面直角坐标系xoy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点p的位置在(0,0),圆在x轴上沿正向滚动当圆滚动到圆心位于c(2,1)时,的坐标为_(2)(2016·合肥调研)函数ylg(34sin2x)的定义域为_思想方法指导在坐标系中研究角就是一种数形结合思想,利用三角函数线可直观得到有关三角函数的不等式的解集解析(1
11、)如图所示,过圆心c作x轴的垂线,垂足为a,过p作x轴的垂线与过c作y轴的垂线交于点b.因为圆心移动的距离为2,所以劣弧2,即圆心角pca2,则pcb2,所以pbsin(2)cos 2,cbcos(2)sin 2,所以xp2cb2sin 2,yp1pb1cos 2,所以(2sin 2,1cos 2)(2)34sin2x0,sin2x,sin x.利用三角函数线画出x满足条件的终边范围(如图阴影部分所示),x(kz)答案(1)(2sin 2,1cos 2)(2)(kz)第3课时阶段重难点梳理1三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦2任意角的三角函数的定义(
12、推广)设p(x,y)是角终边上异于顶点的任一点,其到原点o的距离为r,则sin ,cos ,tan (x0)重点题型训练1设集合mx|x·180°45°,kz,nx|x·180°45°,kz,那么()amn bmncnm dmn答案b解析方法一由于mx|x·180°45°,kz,45°,45°,135°,225°,nx|x·180°45°,kz,45°,0°,45°,90°,135°,1
13、80°,225°,显然有mn,故选b.方法二由于m中,x·180°45°k·90°45°(2k1)·45°,2k1是奇数;而n中,x·180°45°k·45°45°(k1)·45°,k1是整数,因此必有mn,故选b.2若是第三象限角,则下列各式中不成立的是()asin cos 0 btan sin 0ccos tan 0 dtan sin 0答案b解析是第三象限角,sin 0,cos 0,tan 0,则可排除a、c、
14、d,故选b.3(2016·杭州一模)已知是第二象限的角,其终边上的一点为p(x,),且cos x,则tan 等于()a. b.c d答案d解析p(x,),y.又cos x,r2,x2()2(2)2,解得x±.由是第二象限的角,得x,tan .4(2016·杭州第二中学模拟)若390°角的终边上有一点p(a,3),则a的值是()a. b3c d3答案b解析tan 390°,又tan 390°tan(360°30°)tan 30°,a3.5已知点p(sin cos ,2)在第二象限,则的一个变化区间是()a.
15、 b.c. d.答案c解析p(sin cos ,2)在第二象限,sin <cos ,的一个变化区间是.6已知角2k(kz),若角与角的终边相同,则y的值为()a1 b1c3 d3答案b解析由2k(kz)及终边相同的概念知,角的终边在第四象限,又角与角的终边相同,所以角是第四象限角,所以sin <0,cos >0,tan <0.所以y1111.7在直角坐标系中,o是原点,a(,1),将点a绕o逆时针旋转90°到b点,则b点坐标为_答案(1,)解析依题意知oaob2,aox30°,box120°,设点b坐标为(x,y),所以x2cos 120&
16、#176;1,y2sin 120°,即b(1,)8已知扇形的圆心角为,面积为,则扇形的弧长等于_答案解析设扇形半径为r,弧长为l,则解得9设是第三象限角,且cos ,则是第_象限角答案二解析由是第三象限角,知为第二或第四象限角,cos ,cos 0,综上知为第二象限角10在(0,2)内,使sin x>cos x成立的x的取值范围为_答案(,)解析如图所示,找出在(0,2)内,使sin xcos x的x值,sin cos ,sin cos .根据三角函数线的变化规律标出满足题中条件的角x(,)11一个扇形oab的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长ab.解
17、设扇形的半径为r cm,弧长为l cm,则解得圆心角2(rad)如图,过o作ohab于h,则aoh1 rad.ah1·sin 1sin 1(cm),ab2sin 1(cm)圆心角的弧度数为2 rad,弦长ab为2sin 1 cm.12已知角终边上一点p,p到x轴的距离与到y轴的距离之比为34,且sin <0,求cos 2tan 的值解设p(x,y),则根据题意,可得.又sin <0,的终边只可能在第三、第四象限若点p位于第三象限,可设p(4k,3k)(k>0),则r5k,从而cos ,tan ,cos 2tan .若点p位于第四象限,可设p(4k,3k)(k>
18、0),则r5k,从而cos ,tan ,cos 2tan .综上所述,若点p位于第三象限,则cos 2tan ;若点p位于第四象限,则cos 2tan . 13.已知sin <0,tan >0.(1)求角的集合;(2)求终边所在的象限;(3)试判断tan sin cos 的符号解(1)由sin <0,知在第三、四象限或y轴的负半轴上;由tan >0,知在第一、三象限,故角在第三象限,其集合为|2k<<2k,kz(2)由2k<<2k,kz,得k<<k,kz,故终边在第二、四象限(3)当在第二象限时,tan <0,sin >0,cos <0,所以tan sin cos 取正号;当在第四象限时,tan <0,sin <0,cos >0,所以tan sin cos 也取正号因此,tan sin cos 取正号思导总结作业布置1角870°的终边所在的象限是()a第一象限 b第二象限c第三象限 d第四象限答案c解析由870°1 080°210°,知870°角和210°角终边相同,在第三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津人证模拟考试题库及答案
- 青年教师座谈会校长致辞:《长安的荔枝》启示:送一份执着育一树未来
- 2025年高等数学教学水平考试试题及答案
- 平安校园考试题库及答案
- 财务人员集中管理办法
- 东台应急预案管理办法
- pos机安装管理办法
- 2025年食品冷冻机械项目发展计划
- 融资租赁管理办法最早
- 个人贷款集中管理办法
- 2024年苏州历史文化名城建设集团有限公司招聘笔试冲刺题(带答案解析)
- 医院保洁中央运输服务项目管理制度
- 《国际中文教育概论》课件 第三章 国际中文教育与跨文化教育
- 初中俄语七年级第一课课件
- pvc板材生产工艺流程图
- 《CT检查技术》课件-CT检查原理
- 新能源汽车功率电子基础 习题答案汇总(程夕明) 习题集1-6
- 安全出口和疏散指示
- 软件使用授权书
- 肥料、农药采购服务方案(技术方案)
- 员工安全环保履职能力评估
评论
0/150
提交评论