2022届高三数学一轮复习(原卷版)第八章 8.4直线、平面平行-教师版_第1页
2022届高三数学一轮复习(原卷版)第八章 8.4直线、平面平行-教师版_第2页
2022届高三数学一轮复习(原卷版)第八章 8.4直线、平面平行-教师版_第3页
2022届高三数学一轮复习(原卷版)第八章 8.4直线、平面平行-教师版_第4页
2022届高三数学一轮复习(原卷版)第八章 8.4直线、平面平行-教师版_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 第1课时进门测1下列命题中正确的是()a若a,b是两条直线,且ab,那么a平行于经过b的任何平面b若直线a和平面满足a,那么a与内的任何直线平行c平行于同一条直线的两个平面平行d若直线a,b和平面满足ab,a,b,则b答案d解析a中,a可以在过b的平面内;b中,a与内的直线可能异面;c中,两平面可相交;d中,由直线与平面平行的判定定理知,b,正确2若平面平面,直线a平面,点b,则在平面内且过b点的所有直线中()a不一定存在与a平行的直线 b只有两条与a平行的直线c存在无数条与a平行的直线 d存在唯一与a平行的直线答案a解析当直线a在平面内且过b点时,不存在与a平行的直线,故选a.3过三棱柱a

2、bca1b1c1任意两条棱的中点作直线,其中与平面abb1a1平行的直线共有_条答案6解析各中点连线如图,只有平面efgh与平面abb1a1平行,在四边形efgh中有6条符合题意4. 如图是长方体被一平面所截得的几何体,四边形efgh为截面,则四边形efgh的形状为_答案平行四边形解析平面abfe平面dcgh,又平面efgh平面abfeef,平面efgh平面dcghhg,efhg.同理ehfg,四边形efgh的形状是平行四边形作业检查无第2课时阶段训练题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,四棱锥pabcd中,adbc,abbcad,e,f,h分别为线段ad,pc

3、,cd的中点,ac与be交于o点,g是线段of上一点(1)求证:ap平面bef;(2)求证:gh平面pad.证明(1)连接ec,adbc,bcad,bc綊ae,四边形abce是平行四边形,o为ac的中点又f是pc的中点,foap,fo平面bef,ap平面bef,ap平面bef.(2)连接fh,oh,f,h分别是pc,cd的中点,fhpd,fh平面pad.又o是be的中点,h是cd的中点,ohad,oh平面pad.又fhohh,平面ohf平面pad.又gh平面ohf,gh平面pad.命题点2直线与平面平行的性质例2 如图,四棱锥pabcd的底面是边长为8的正方形,四条侧棱长均为2.点g,e,f,

4、h分别是棱pb,ab,cd,pc上共面的四点,平面gefh平面abcd,bc平面gefh.(1)证明:ghef;(2)若eb2,求四边形gefh的面积(1)证明因为bc平面gefh,bc平面pbc,且平面pbc平面gefhgh,所以ghbc.同理可证efbc,因此ghef.(2)解如图,连接ac,bd交于点o,bd交ef于点k,连接op,gk.因为papc,o是ac的中点,所以poac,同理可得pobd.又bdaco,且ac,bd都在底面内,所以po底面abcd.又因为平面gefh平面abcd,且po平面gefh,所以po平面gefh.因为平面pbd平面gefhgk,所以pogk,且gk底面a

5、bcd,从而gkef.所以gk是梯形gefh的高由ab8,eb2得ebabkbdb14,从而kbdbob,即k为ob的中点再由pogk得gkpo,即g是pb的中点,且ghbc4.由已知可得ob4,po6,所以gk3.故四边形gefh的面积s·gk×318.【同步练习】1、如图所示,cd,ab均与平面efgh平行,e,f,g,h分别在bd,bc,ac,ad上,且cdab.求证:四边形efgh是矩形证明cd平面efgh,而平面efgh平面bcdef,cdef.同理hgcd,且heab,efhg.同理hegf,四边形efgh为平行四边形cdef,heab,hef为异面直线cd和a

6、b所成的角(或补角)又cdab,heef.平行四边形efgh为矩形题型二平面与平面平行的判定与性质例3如图所示,在三棱柱abca1b1c1中,e,f,g,h分别是ab,ac,a1b1,a1c1的中点,求证: (1)b,c,h,g四点共面;(2)平面efa1平面bchg.证明(1)g,h分别是a1b1,a1c1的中点,gh是a1b1c1的中位线,ghb1c1.又b1c1bc,ghbc,b,c,h,g四点共面(2)e,f分别是ab,ac的中点,efbc.ef平面bchg,bc平面bchg,ef平面bchg.a1g綊eb,四边形a1ebg是平行四边形,a1egb.a1e平面bchg,gb平面bchg

7、,a1e平面bchg.a1eefe,平面efa1平面bchg.引申探究1在本例条件下,若d为bc1的中点,求证:hd平面a1b1ba.证明如图所示,连接hd,a1b,d为bc1的中点,h为a1c1的中点,hda1b,又hd平面a1b1ba,a1b平面a1b1ba,hd平面a1b1ba.2在本例条件下,若d1,d分别为b1c1,bc的中点,求证:平面a1bd1平面ac1d.证明如图所示,连接a1c交ac1于点m,四边形a1acc1是平行四边形,m是a1c的中点,连接md,d为bc的中点,a1bdm.a1b平面a1bd1,dm平面a1bd1,dm平面a1bd1.又由三棱柱的性质知,d1c1綊bd,

8、四边形bdc1d1为平行四边形,dc1bd1.又dc1平面a1bd1,bd1平面a1bd1,dc1平面a1bd1,又dc1dmd,dc1平面ac1d,dm平面ac1d,平面a1bd1平面ac1d.【同步练习】1、如图,四棱柱abcda1b1c1d1的底面abcd是正方形,o是底面中心,a1o底面abcd,abaa1.(1)证明:平面a1bd平面cd1b1;(2)求三棱柱abda1b1d1的体积(1)证明由题设知,bb1綊dd1,四边形bb1d1d是平行四边形,bdb1d1.又bd平面cd1b1,b1d1平面cd1b1,bd平面cd1b1.a1d1綊b1c1綊bc,四边形a1bcd1是平行四边形

9、,a1bd1c.又a1b平面cd1b1,d1c平面cd1b1,a1b平面cd1b1.又bda1bb,平面a1bd平面cd1b1.(2)解a1o平面abcd,a1o是三棱柱abda1b1d1的高又aoac1,aa1,a1o1.又sabd××1,sabd·a1o1.第3课时阶段重难点梳理1线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行线面平行”)la,a,l,l性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行线线平行”)l,l,

10、b,lb2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行面面平行”)a,b,abp,a,b,性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行,a,b,ab重点题型训练题型三平行关系的综合应用例4 如图所示,在三棱柱abca1b1c1中,d是棱cc1的中点,问在棱ab上是否存在一点e,使de平面ab1c1?若存在,请确定点e的位置;若不存在,请说明理由解方法一存在点e,且e为ab的中点时,de平面ab1c1.下面给出证明:如图,取bb1的中点f,连接df,则dfb1c1,ab的中点为e,连

11、接ef,ed,则efab1,b1c1ab1b1,平面def平面ab1c1.而de平面def,de平面ab1c1.方法二假设在棱ab上存在点e,使得de平面ab1c1,如图,取bb1的中点f,连接df,ef,ed,则dfb1c1,又df平面ab1c1,b1c1平面ab1c1,df平面ab1c1,又de平面ab1c1,dedfd,平面def平面ab1c1,ef平面def,ef平面ab1c1,又ef平面abb1,平面abb1平面ab1c1ab1,efab1,点f是bb1的中点,点e是ab的中点即当点e是ab的中点时,de平面ab1c1.【同步练习】1、如图所示,在四面体abcd中,截面efgh平行于

12、对棱ab和cd,试问截面在什么位置时其截面面积最大?解ab平面efgh,平面efgh与平面abc和平面abd分别交于fg,eh.abfg,abeh,fgeh,同理可证efgh,截面efgh是平行四边形设aba,cdb,fgh(即为异面直线ab和cd所成的角或其补角)又设fgx,ghy,则由平面几何知识可得,两式相加得1,即y(ax),sefghfg·gh·sin x··(ax)·sin x(ax)x>0,ax>0且x(ax)a为定值,x(ax),当且仅当xax时等号成立此时x,y.即当截面efgh的顶点e、f、g、h分别为棱ad、a

13、c、bc、bd的中点时截面面积最大2、如图,在四棱锥sabcd中,已知底面abcd为直角梯形,其中adbc,bad90°,sa底面abcd,saabbc2,tansda.(1)求四棱锥sabcd的体积;(2)在棱sd上找一点e,使ce平面sab,并证明规范解答解(1)sa底面abcd,tansda,sa2,ad3.由题意知四棱锥sabcd的底面为直角梯形,且saabbc2,vsabcd·sa··(bcad)·ab×2××(23)×2.(2)当点e位于棱sd上靠近d的三等分点处时,可使ce平面sab.证明如

14、下:取sd上靠近d的三等分点为e,取sa上靠近a的三等分点为f,连接ce,ef,bf,则ef綊ad,bc綊ad,bc綊ef,cebf.又bf平面sab,ce平面sab,ce平面sab.思导总结一、判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a,b,aba);(3)利用面面平行的性质定理(,aa);(4)利用面面平行的性质(,a,a,aa)二、证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三

15、个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化作业布置1有下列命题:若直线l平行于平面内的无数条直线,则直线l;若直线a在平面外,则a;若直线ab,b,则a;若直线ab,b,则a平行于平面内的无数条直线其中真命题的个数是()a1 b2 c3 d4答案a解析命题:l可以在平面内,不正确;命题:直线a与平面可以是相交关系,不正确;命题:a可以在平面内,不正确;命题正确故选a.2已知m,n,l1,l2表示直线,表示平面若m,n,l1,l2,l1l2m,则的一个充分条件是()am且l1 bm且ncm且nl2 dml1且nl2答案d解析由定理“如果一个平面内有两

16、条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项d可推知.故选d.3对于空间中的两条直线m,n和一个平面,下列命题中的真命题是()a若m,n,则mnb若m,n,则mnc若m,n,则mnd若m,n,则mn答案d解析对a,直线m,n可能平行、异面或相交,故a错误;对b,直线m与n可能平行,也可能异面,故b错误;对c,m与n垂直而非平行,故c错误;对d,垂直于同一平面的两直线平行,故d正确4下列四个正方体图形中,a,b为正方体的两个顶点,m,n,p分别为其所在棱的中点,能得出ab平面mnp的图形的序号是()a b c d答案b解析中易知npaa,mnab,平面mnp平面aab可得出a

17、b平面mnp(如图)中,npab,能得出ab平面mnp.5已知平面平面,p是,外一点,过点p的直线m与,分别交于a,c两点,过点p的直线n与,分别交于b,d两点,且pa6,ac9,pd8,则bd的长为()a16 b24或c14 d20答案b解析由得abcd.分两种情况:若点p在,的同侧,则,pb,bd;若点p在,之间,则,pb16,bd24.6,是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么;如果m,n,那么mn;如果,m,那么m;如果mn,那么m与所成的角和n与所成的角相等其中正确的命题有_(填写所有正确命题的编号)答案解析当mn,m,n时,两个平面的位置关系不确定,故

18、错误,经判断知均正确,故正确答案为.7设,是三个不同的平面,m,n是两条不同的直线,在命题“m,n,且_,则mn”中的横线处填入下列三组条件中的一组,使该命题为真命题,n;m,n;n,m.可以填入的条件有_答案或解析由面面平行的性质定理可知,正确;当n,m时,n和m在同一平面内,且没有公共点,所以平行,正确8在正四棱柱abcda1b1c1d1中,o是底面abcd的中心,p是dd1的中点,设q是cc1上的点,则点q满足条件_时,有平面d1bq平面pao.答案q为cc1的中点解析假设q为cc1的中点因为p为dd1的中点,所以qbpa.连接db,因为o是底面abcd的中心,所以d1bpo,又d1b平

19、面pao,qb平面pao,且papo于p,所以d1b平面pao,qb平面pao,又d1bqb于b,所以平面d1bq平面pao.故点q满足条件,q为cc1的中点时,有平面d1bq平面pao.9在四面体abcd中,m,n分别是acd,bcd的重心,则四面体的四个面中与mn平行的是_答案平面abd与平面abc解析如图,取cd的中点e,连接ae,be.则emma12,enbn12,所以mnab.所以mn平面abd,mn平面abc.*10.在三棱锥sabc中,abc是边长为6的正三角形,sasbsc15,平面defh分别与ab,bc,sc,sa交于点d,e,f,h.d,e分别是ab,bc的中点,如果直线

20、sb平面defh,那么四边形defh的面积为_答案解析如图,取ac的中点g,连接sg,bg.易知sgac,bgac,sgbgg,故ac平面sgb,所以acsb.因为sb平面defh,sb平面sab,平面sab平面defhhd,则sbhd.同理sbfe.又d,e分别为ab,bc的中点,则h,f也为as,sc的中点,从而得hf綊ac綊de,所以四边形defh为平行四边形又acsb,sbhd,deac,所以dehd,所以四边形defh为矩形,其面积shf·hd(ac)·(sb).11. 如图,e、f、g、h分别是正方体abcda1b1c1d1的棱bc、cc1、c1d1、aa1的中点求证:(1)eg平面bb1d1d;(2)平面bdf平面b1d1h.证明(1)取b1d1的中点o,连接go,ob,易证四边形bego为平行四边形,故obge,由线面平行的判定定理即可证eg平面bb1d1d.(2)由题意可知bdb1d1.如图,连接hb、d1f,易证四边形hbfd1是平行四边形,故hd1bf.又b1d1hd1d1,bdbfb,所以平面bdf平面b1d1h.12 在如图所示的多面体abcdef中,四边形abcd是边长为a的菱形,且dab

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论