实验五异方差模型的检验_第1页
实验五异方差模型的检验_第2页
实验五异方差模型的检验_第3页
实验五异方差模型的检验_第4页
实验五异方差模型的检验_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 实 验 报 告课程名称: 计量经济学 实验项目: 实验五 异方差模型的 检验和处理 实验类型:综合性 设计性 验证性R专业班别: 12国 姓 名: 学 号: 412 实验课室: 厚德楼A404 指导教师: 实验日期: 2015年5月28日 广东商学院华商学院教务处 制 一、实验项目训练方案小组合作:是 否R小组成员:无实验目的:掌握异方差模型的检验和处理方法实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。实验训练内容(包括实验原理和操作步骤):【实验原理】异方差的检验:图形检验法、Goldfeld-Quanadt检验法、White检验法、Glejser检验

2、法;异方差的处理:模型变换法、加权最小二乘法(WLS)。【实验步骤】本实验考虑三个模型:【1】广东省财政支出CZ对财政收入CS的回归模型;(数据见附表1:附表1-广东省数据)【2】广东省固定资产折旧ZJ对国内生产总值GDPS和时间T的二元回归模型;(数据见附表1:附表1-广东省数据)【3】广东省各市城镇居民消费支出Y对人均收入X的回归模型。(数据见附表2:附表2-广东省2005年数据)(一)异方差的检验1.图形检验法分别用相关分析图和残差散点图检验模型【1】、模型【2】和模型【3】是否存在异方差。注:相关分析图是作应变量对自变量的散点图(亦可作模型残差对自变量的散点图);残差散点图是作残差的平

3、方对自变量的散点图。模型【2】中作图取自变量为GDPS来作图。模型【1】 相关分析图 残差散点图模型【2】 相关分析图 残差散点图模型【3】 相关分析图 残差散点图【思考】相关分析图和残差散点图的不同点是什么?*在模型【2】中,自变量有两个,有无其他处理方法?尝试做出来。(请对得到的图表进行处理,以上在一页内)2.Goldfeld-Quanadt检验法用Goldfeld-Quanadt检验法检验模型【3】是否存在异方差。注:Goldfeld-Quanadt检验法的步骤为:排序:删除观察值中间的约1/4的,并将剩下的数据分为两个部分。构造F统计量:分别对上述两个部分的观察值求回归模型,由此得到的

4、两个部分的残差平方为和。为较大的残差平方和,为较小的残差平方和。算统计量。判断:给定显著性水平,查F分布表得临界值。如果,则认为模型中的随机误差存在异方差。(详见课本135页)将实验中重要的结果摘录下来,附在本页。obsXY17021.944632.68999999999927220.446317.0337299.256463.3748241.2099999999996350.3858842.846757.0269214.67294.9379867.367669.84810097.27476.65910908.368113.641011944.088296.43111229.179505.66

5、1215762.7712651.951317680.114485.611418287.2414468.241518907.7314323.661621015.0318550.561722881.821767.781828665.2521188.84Dependent Variable: YMethod: Least SquaresDate: 06/07/15 Time: 11:18Sample: 1 7Included observations: 7VariableCoefficientStd. Errort-StatisticProb.  X0.7230770.21838

6、63.3110030.0212C536.88741814.2540.2959270.7792R-squared0.686771    Mean dependent var6497.894Adjusted R-squared0.624125    S.D. dependent var966.9988S.E. of regression592.8541    Akaike info criterion15.84273Sum squared resid1757380. &

7、#160;  Schwarz criterion15.82728Log likelihood-53.44956    Hannan-Quinn criter.15.65172F-statistic10.96274    Durbin-Watson stat1.761325Prob(F-statistic)0.021217Dependent Variable: YMethod: Least SquaresDate: 06/07/15 Time: 11:20Sample: 12 18Included

8、 observations: 7VariableCoefficientStd. Errort-StatisticProb.  X0.7592910.1778984.2681250.0080C1243.7433707.2380.3354900.7509R-squared0.784640    Mean dependent var16776.66Adjusted R-squared0.741567    S.D. dependent var3677.261S.E. of regression1869

9、.382    Akaike info criterion18.13956Sum squared resid17472943    Schwarz criterion18.12411Log likelihood-61.48846    Hannan-Quinn criter.17.94855F-statistic18.21689    Durbin-Watson stat2.037081Prob(F-statistic)0.007953

10、有上图可知=17472943,=1757380 F=å/=17472943/1757380=9.94260945.在下,上式中分子、分母的自由度均为5,查F分布表得临界值F0.05(5,5)=5.05,因为F=9.94260945> F0.05(5,5)=5.05,所以拒接原假设,说明模型存在异方差。 (请对得到的图表进行处理,以上在一页内)3.White检验法分别用White检验法检验模型【1】、模型【2】和模型【3】是否存在异方差。Eviews操作:先做模型,选view/Residual Tests/ Heteroskedasticity Te

11、sts/White/(勾选cross terms)。摘录主要结果附在本页内。模型【1】Heteroskedasticity Test: WhiteF-statistic4.40866    Prob. F(2,25)0.0156Obs*R-squared7.932189    Prob. Chi-Square(2)0.0189Scaled explained SS14.57723    Prob. Chi-Square(2)0.0007Test Equation:Depend

12、ent Variable: RESID2Method: Least SquaresDate: 06/07/15 Time: 12:44Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  C-879.85131125.376-0.7818290.4417CS12.937204.6513282.7813980.0101CS2-0.0066200.002964-2.2335610.0347R-squared0.283292   

13、; Mean dependent var1940.891Adjusted R-squared0.225956    S.D. dependent var4080.739S.E. of regression3590.225    Akaike info criterion19.31077Sum squared resid3.22E+08    Schwarz criterion19.45351Log likelihood-267.3508  

14、60; Hannan-Quinn criter.19.35441F-statistic4.940866    Durbin-Watson stat2.144291Prob(F-statistic)0.015552模型【2】Heteroskedasticity Test: WhiteF-statistic1.993171    Prob. F(5,22)0.1195Obs*R-squared8.729438    Prob. Chi-Square(5)0.1204Sc

15、aled explained SS14.67857    Prob. Chi-Square(5)0.0118Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 06/07/15 Time: 12:47Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  C1837.8986243.7010.2943600.7712GDPS-3.39

16、50935.407361-0.6278650.5366GDPS2-9.08E-050.000185-0.4895370.6293GDPS*T0.1603000.3151760.5086040.6161T-491.56141982.891-0.2479010.8065T249.08543152.98750.3208460.7514R-squared0.311766    Mean dependent var3461.910Adjusted R-squared0.155349    S.D. dependent var

17、7240.935S.E. of regression6654.775    Akaike info criterion20.63147Sum squared resid9.74E+08    Schwarz criterion20.91694Log likelihood-282.8405    Hannan-Quinn criter.20.71874F-statistic1.993171    Durbin-Watson stat1.9

18、71537Prob(F-statistic)0.119510模型【3】Heteroskedasticity Test: WhiteF-statistic7.670826    Prob. F(2,15)0.0051Obs*R-squared9.101341    Prob. Chi-Square(2)0.0106Scaled explained SS14.09286    Prob. Chi-Square(2)0.0009Test Equation:Dependent Var

19、iable: RESID2Method: Least SquaresDate: 06/07/15 Time: 12:51Sample: 1 18Included observations: 18VariableCoefficientStd. Errort-StatisticProb.  C1865425.2810916.0.6636360.5170X-354.7917388.1454-0.9140690.3751X20.0188100.0116861.6095970.1283R-squared0.505630    Mean depe

20、ndent var1232693.Adjusted R-squared0.439714    S.D. dependent var2511199.S.E. of regression1879689.    Akaike info criterion31.88212Sum squared resid5.30E+13    Schwarz criterion32.03052Log likelihood-283.9391    Hannan-

21、Quinn criter.31.90258F-statistic7.670826    Durbin-Watson stat2.010913Prob(F-statistic)0.005074(请对得到的图表进行处理,以上在一页内)4.Glejser检验法用Glejser检验法检验模型【1】是否存在异方差。分别用残差的绝对值对自变量的一次项、二次项,开根号项和倒数项作回归。检验异方差是否存在,并选定异方差的最优形式。摘录主要结果附在本页内。一、一次项回归Dependent Variable: E1Method: Least SquaresDate: 06/

22、07/15 Time: 13:17Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  CS0.0292360.0122792.3809470.0249C14.159918.2594921.7143800.0984R-squared0.179006    Mean dependent var27.30288Adjusted R-squared0.147429    S.D.

23、 dependent var35.20964S.E. of regression32.51074    Akaike info criterion9.869767Sum squared resid27480.66    Schwarz criterion9.964925Log likelihood-136.1767    Hannan-Quinn criter.9.898858F-statistic5.668911    Durbin-

24、Watson stat1.339465Prob(F-statistic)0.024881二、去掉常数项再回归 Dependent Variable: E1Method: Least SquaresDate: 06/07/15 Time: 13:22Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  CS0.0433040.0094564.5794730.0001R-squared0.086198    

25、;Mean dependent var27.30288Adjusted R-squared0.086198    S.D. dependent var35.20964S.E. of regression33.65794    Akaike info criterion9.905436Sum squared resid30587.14    Schwarz criterion9.953015Log likelihood-137.6761   

26、60;Hannan-Quinn criter.9.919981Durbin-Watson stat1.209310三、二次项回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15 Time: 13:19Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  CS21.11E-058.36E-061.3222070.1976C22.302367.5752862.9440940.0067R-sq

27、uared0.063003    Mean dependent var27.30288Adjusted R-squared0.026965    S.D. dependent var35.20964S.E. of regression34.73168    Akaike info criterion10.00193Sum squared resid31363.53    Schwarz criterion10.09709Log like

28、lihood-138.0270    Hannan-Quinn criter.10.03102F-statistic1.748231    Durbin-Watson stat1.203183Prob(F-statistic)0.197614四、开根号项回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15 Time: 13:24Sample: 1978 2005Included observations: 28VariableCoefficientS

29、td. Errort-StatisticProb.  CS(1/2)1.5372330.2690365.7138480.0000R-squared0.265081    Mean dependent var27.30288Adjusted R-squared0.265081    S.D. dependent var35.20964S.E. of regression30.18432    Akaike info criterion9.687583Sum

30、squared resid24599.52    Schwarz criterion9.735162Log likelihood-134.6262    Hannan-Quinn criter.9.702128Durbin-Watson stat1.471849五、倒数项作回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15 Time: 13:26Sample: 1978 2005Included observations: 28VariableCo

31、efficientStd. Errort-StatisticProb.  CS(-1)-2029.779607.7392-3.3398840.0025C46.202298.0122115.7664840.0000R-squared0.300226    Mean dependent var27.30288Adjusted R-squared0.273311    S.D. dependent var35.20964S.E. of regression30.01483  

32、60; Akaike info criterion9.710009Sum squared resid23423.14    Schwarz criterion9.805167Log likelihood-133.9401    Hannan-Quinn criter.9.739100F-statistic11.15483    Durbin-Watson stat1.566457Prob(F-statistic)0.002542从四个回归的结果看,第二个不显著,其他

33、三个显著,比较这三个回归,还是选择第三个,方程为ABS(RESID)=1.53723330222*CS(1/2)即异方差的形式为:²=(1.537233*(CS(1/2))²=2.36085CS也即异方差的形式为:²=²CS就把这个形式确定为异方差的形式。 对ZJ与GDPS和T回归的Glejser检验可以类似进行检验,消费支出与可支配收入回归的Glejser检验可以类似进行检验。 通过前面实验的异方差模型的检验,发现根据广东数据CZ对CS的回归,ZJ对GDPS和T的回归,消费支出与可支配收入回归都存在异方差,现在分别对它们进行处理。加权最小二乘法已经成为

34、处理异方差模型的标准方法,再Eviews中使用WLS来消除异方差,关键是权数的选取。 (请对得到的图表进行处理,以上在一页内)(二)异方差的处理1.模型【1】中CZ对CS回归异方差的处理已知CZ对CS回归异方差的形式为:,选取权数,使用加权最小二乘法处理异方差。并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理异方差。摘录主要结果附在本页内。Dependent Variable: CZMethod: Least SquaresDate: 06/07/15 Time: 13:32Sample: 1978 2005Included observations: 28Weighti

35、ng series: 1/(CS(1/2)VariableCoefficientStd. Errort-StatisticProb.  CS1.2756770.01940665.736280.0000C-21.243654.264097-4.9819800.0000Weighted StatisticsR-squared0.994019    Mean dependent var254.4606Adjusted R-squared0.993789    S.D. dependent var189

36、.1988S.E. of regression22.86683    Akaike info criterion9.166001Sum squared resid13595.19    Schwarz criterion9.261159Log likelihood-126.3240    Hannan-Quinn criter.9.195092F-statistic4321.259    Durbin-Watson stat1.5503

37、17Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.995276    Mean dependent var552.2429Adjusted R-squared0.995095    S.D. dependent var653.1881S.E. of regression45.74872    Sum squared resid54416.57Durbin-Watson stat1.545575回归方程为 CZ

38、=1.2756769685*CS-21.2436468305它与存在异方差的如下方程估计有所不同。 CZ=1.27887365026*-CS-22.6807299594至于经过加权最小二乘法估计的残差项是否存在异方差,同样可以用本实验的异方差模型的检验去检验,但是若在eviews中使用wls命令估计的序列resed不能用俩检验,因为产生的序列resid是非加权方式的残差。要想检验只能自己进行同方差变换,然后回归以后再检验了。进行同方差行变换,然后回归实际上就是CZ/(CS(1/2)对1/(CS(1/2)和CS/(CS(1/2)回归,结果如下: Dependent Variable: CZ/(C

39、S(1/2)Method: Least SquaresDate: 06/07/15 Time: 13:39Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  1/(CS(1/2)-21.243654.264097-4.9819800.0000CS/(CS(1/2)1.2756770.01940665.736280.0000R-squared0.985934    Mean dependent var21.136

40、88Adjusted R-squared0.985393    S.D. dependent var15.71588S.E. of regression1.899444    Akaike info criterion4.189748Sum squared resid93.80503    Schwarz criterion4.284906Log likelihood-56.65647    Hannan-Quinn criter.4.

41、218839Durbin-Watson stat1.550317观察其残差趋势图还是存在异方差,再改为CZ/CS对1/CS和回归,如果如下:Dependent Variable: CZ/CSMethod: Least SquaresDate: 06/07/15 Time: 13:42Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  1/CS-19.828602.064540-9.6043680.0000C1.2625010.02721846.384

42、560.0000R-squared0.780115    Mean dependent var1.077876Adjusted R-squared0.771658    S.D. dependent var0.213378S.E. of regression0.101963    Akaike info criterion-1.659667Sum squared resid0.270307    Schwarz criterion-1.

43、564510Log likelihood25.23534    Hannan-Quinn criter.-1.630577F-statistic92.24388    Durbin-Watson stat1.613436Prob(F-statistic)0.000000观察其残差趋势图应该不存在异方差了,其方程为CZ/CS=-19.8286033657*1/CS+1.26250140483变换为原方程为CZ=-19.8286033657+1.26250140483*CS(请对得到的图表进行处理,以上在两页内)2.模

44、型【2】中ZJ对GDPS和T回归异方差的处理已知ZJ对GDPS和T回归异方差的形式为:,选取权数,使用加权最小二乘法处理异方差。并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理异方差。摘录主要结果附在本页内。Dependent Variable: ZJMethod: Least SquaresDate: 06/07/15 Time: 13:46Sample: 1978 2005Included observations: 28Weighting series: 1/(GDPS(3/8)VariableCoefficientStd. Errort-StatisticProb

45、.  GDPS0.1669950.00256565.100680.0000T-4.3536850.881296-4.9400930.0000Weighted StatisticsR-squared0.997009    Mean dependent var418.9342Adjusted R-squared0.996894    S.D. dependent var382.1762S.E. of regression29.59878    Akaike i

46、nfo criterion9.682092Sum squared resid22778.28    Schwarz criterion9.777250Log likelihood-133.5493    Hannan-Quinn criter.9.711183Durbin-Watson stat0.668750Unweighted StatisticsR-squared0.996289    Mean dependent var846.0661Adjusted R-squar

47、ed0.996146    S.D. dependent var1014.824S.E. of regression63.00261    Sum squared resid103202.6Durbin-Watson stat0.754208回归方程为ZJ=0.166994775675*GDPS-4.35368534692*T它与存在异方差时的如下方程估计也有所不同。ZJ=0.163625595483*GDPS-2.83149724876*T进行同方差性变换,然后回归实际上就是ZJ/(GDPS(8/3)对GDPS/

48、(GDPS(8/3)和T/(GDPS(8/3)回归,结果如下:Dependent Variable: ZJ/(GDPS(3/8)Method: Least SquaresDate: 06/07/15 Time: 13:50Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  GDPS/(GDPS(3/8)0.1669950.00256565.100680.0000T/(GDPS(3/8)-4.3536850.881296-4.9400930.0000R

49、-squared0.994224    Mean dependent var27.59529Adjusted R-squared0.994002    S.D. dependent var25.17403S.E. of regression1.949678    Akaike info criterion4.241955Sum squared resid98.83235    Schwarz criterion4.337112Log l

50、ikelihood-57.38737    Hannan-Quinn criter.4.271045Durbin-Watson stat0.668750观测其残差趋势图可能还存在异方差,再改为ZJ/GDPS对C和T/GDPS回归,结果如下:Dependent Variable: ZJ/GDPSMethod: Least SquaresDate: 06/07/15 Time: 13:52Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb

51、.  C0.1619500.00346146.793580.0000T/GDPS-3.7265040.399838-9.3200440.0000R-squared0.769633    Mean dependent var0.135596Adjusted R-squared0.760772    S.D. dependent var0.021590S.E. of regression0.010560    Akaike info criterion-6.1

52、94729Sum squared resid0.002899    Schwarz criterion-6.099572Log likelihood88.72621    Hannan-Quinn criter.-6.165638F-statistic86.86322    Durbin-Watson stat0.439676Prob(F-statistic)0.000000观测其残差趋势图应该不存在异方差了,其方程为ZJ/GDPS=0.161949825215-3.72650431798*T/GDPS变换为原方程ZJ=0.161949825215*-3.72650431798T(请对得到的图表进行处理,以上在两页内)3.模型【3】中消费支出Y对可支配收入X回归异方差的处理已知Y对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论