halcon中的常用算子的中文说明_第1页
halcon中的常用算子的中文说明_第2页
halcon中的常用算子的中文说明_第3页
halcon中的常用算子的中文说明_第4页
halcon中的常用算子的中文说明_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、sub_image (ImageConverted1, ImageConverted2, ImageSub, 1, 0)一幅图减另一幅图。用一幅图的灰度减另一幅的灰度成新的一幅图。mult_image (Image, ImagePart, ImageResult, 0.015, 0)一幅图加一幅成的一幅图convert_image_type (Traffic2, ImageConverted2, 'int2')转换图像的格式crop_part (ImageNoise, ImagePart, 0, 0, Width, Height)取出一幅图的中部分dots_image (Ima

2、geResult, DotImage, 5, 'dark', 2)取出图像中圆点partition_dynamic (SelectedRegions, Partitioned, 25, 20)根据各个区域的特征将各个区域分割开。intersection (Partitioned, Region, Characters)取出两个区域中重叠的部分,如果Region有两个区域在Partitioned中,则这两个区域合并成一区域。difference (RegionDilation, RegionErosion, RegionDifference) 取出两个区域中不重叠的部分。crit

3、ical_points_sub_pix (FilterResponse, 'facet', 1.5, 0.7, RowMin, ColMin, RowMax, ColMax, RowSaddle, ColSaddle)取出图像中的关键点。corner_response (Image, FilterResponse, 3, 0.04)auto_threshold (Image, Regions, 10)自动阈值分割,根据灰度直方图中两波峰中的波谷取出阈值。closing (RegionClosing3, Rectangle, RegionClosing4)用一个设计好的区域来封闭

4、其它区域。hom_mat2d_identity (HomMat2DIdentity)生成一个2D单位矩阵hom_mat3d_identity (HomMat3DIdentity)生成一个3D单位矩阵hom_mat2d_translate (HomMat2DIdentity, -0.5*(Row1+Row2), -0.5*(Column1+Column2), HomMat2DTranslate)对矩阵进行2D变换,用于平移。hom_mat3d_rotate (HomMat3DIdentity, GraspPhiZ_ref, 'z', 0, 0, 0, HomMat3D_RZ_Ph

5、i) 对矩阵进行3D变换,用于旋转。hom_mat3d_translate (HomMat3D_RZ_Phi, CenterPointX_ref, CenterPointY_ref, 0, ref_H_grasp) 对矩阵进行3D变换,用于平移。hom_mat2d_scale (HomMat2DTranslate, ScaleFactor, ScaleFactor, 0, 0, HomMat2DScale) 对矩阵进行变换,用于缩放hom_mat3d_compose (cam_H_ref, ref_H_grasp, cam_H_grasp)将两矩阵相乘hom_mat3d_to_pose (ca

6、m_H_grasp, PoseCamGripper)将矩阵变换成3D位姿affine_trans_contour_xld (LogoContoursTemp, LogoContours, HomMat2DComplete)对线条LogoContoursTemp进行HomMat2DComplete对应的变换(平移和缩放)。compose3 (ImageRed, ImageGreen, ImageBlue, LogoImageTempl)将三幅图像合并成一幅图像decompose3 (LogoImage, ImageR, ImageG, ImageB)将一幅图像根据RGB值转换成三幅图像。pain

7、t_xld (LogoContours, LogoImageTempl, LogoImage, Blue,Orange,Blue,Blue,Blue,Blue)对线条喷颜色。Blue := 0,48,117,Orange := 255,181,41check_difference (Traffic1, Traffic2, Selected1, 'diff_outside', -255, 15, 0, 0, 0)根据两幅图的不同进行图像分割。bin_threshold自动阈值分割,与auto_threshold (Image, Regions, 10)类似,但只有一个最小值取得仅

8、有一个阈值。char_threshold (Alpha1, Alpha1, Characters, 6, 95, Threshold)自动阈值分割,阈值根据直方图的波峰取得dyn_threshold (ImageFilled, ImageMean, RegionDynThresh, 3, 'light')动态阈值分割。gray_histo (Alpha1, Alpha1, AbsoluteHisto, RelativeHisto)获得绝对与相对直方。background_seg (Edges, BackgroundRegions)将找出的区域根据背景分割成各个连通的区域。fil

9、l_up_shape (BackgroundRegions, RegionFillUp, 'area', 1, 40)有选择性的填充smooth_funct_1d_gauss (Function, Sigma, SmoothedFunction)对一维数组进行平滑处理。funct_1d_to_pairs (SmoothedFunction, XValues, YValues)将数据分别对应赋予一个横坐标。fill_interlace (Image, ImageFilled, 'odd')修改在采集图像过程中造成的两个半幅图像拼接的问题。regiongrowing

10、 (Image, Regions, 1, 1, 1, 100)将图像分割成各个灰度值相近的区域。expand_gray_ref (Regions, Image, EmptyRegion, RegionExpand, 'maximal', 'image', Mean, 11)根据灰度和颜色将分离的区域连通。expand_line (Image, RegionExpand, Line, 'mean', 'row', 100)将轮廓拓展成一个跟其灰度相近的区域。expand_region (Regions, NoPixel, Regio

11、nExpanded1, 'maximal', 'image') 根据设定的特征将分离的区域连通。fast_threshold (Image, Region, 128, 255, 10)根据最大和最小灰度以及面积选出区域gray_erosion_rect (Image, Imag, StrokeWidth, StrokeWidth)每个点的灰度值用这个点的矩形掩码内最小灰度值代替。select_shape_std (ConnectedRegions, SelectedRegion, 'max_area', 70)从多个区域选出指定特征相似的区域。如

12、选出面积最大的区域。scale_image_max (ImageReduced, ImageScaleMax)增加图像的对比度text_line_orientation (SelectedRegion, ImageScaleMax, 30, rad(-30), rad(30), OrientationAngle) 检测具有字符的图像的方向rotate_image (ImageScaleMax, ImageRotate, deg(-OrientationAngle), 'constant')将图像按照指定的角度旋转find_text (ImageRotate, TextModel

13、, TextResult)根据设定的模板寻找字符get_mposition (WindowHandleButton, Row, Column, Button)获得鼠标坐标gen_grid_region (RegionGrid, Gap, Gap, 'lines', Width, Height)生成网格区域clip_region (Grid, StreetGrid, 165, 20, 405, 750)选择一定范围内的区域。clip_region_rel (RegionBorder, RegionClipped, 5, 5, 5, 5)选择四边都减去一定像素的区域gray_clo

14、sing (Image, ImageReduced, ImageClosingFast)灰度值闭操作gray_opening (Image, ImageReduced, ImageOpeningFast) 灰度值开操作hysteresis_threshold (EdgeAmplitude, RegionHysteresis, 10, 20, 10)当大于最大阈值的点取出做为可靠点,最大与最小值之间的点根据与可靠点的关系选出。get_domain (Image, Domain)得到整幅图像的区域gen_rectangle1 (Rectangle, Row1, Column1, Row2, Col

15、umn2)在区域内部的实心区域得到一个平行于横坐标的最大矩形。complement(Region : RegionComplement : : )找到输入区域的补区域。interjacent (Regions, RegionInterjacent, 'border')找到将各个区域分割开的区域local_max (Image, LocalMaxima)找到比周围灰度值都大的点。local_min (ImageInverted, LocalMinima) 找到比周围灰度值都小的点smooth_image (Image, ImageSmooth, 'deriche2'

16、;, 0.2)平滑图像invert_image (ImageSmooth, ImageInverted)用255减去每个点的灰度值作为这个点新的灰度值。shape_trans (RegionFillUp, Pads, 'convex')根据指定的参数对区域的形状进行转换,如转换成正方形等。select_shape_proto (Pads, BallBonds, MissingBonds, 'overlaps_rel', 0, 0)选出具有相似特征的所有区域boundary (RegionIntersection, RegionBorder, 'inner

17、')获得区域的边界lines_gauss (ImageReducedTracks, Lines, 1.5, 1, 8, 'light', 'true', 'true', 'true')提取图的线条并计算出图的宽度。get_contour_xld (Line, Row, Column)获得线条的各个点的坐标min_max_gray (ImageAngioMedian, ImageAngioMedian, 0, Min, Max, Range)获得区域内图像的最大和最小灰度值median_rect (ImageNeedle,

18、ImageNeedleMedian, 41, 41)对图像中值滤波shape_trans_xld (Border, XLDConvex, 'convex')将区域的边界根据不同的属性转化成线条get_contour_attrib_xld (Line, 'width_left', WidthL)得到线上每个点的属性fit_circle_contour_xld (ObjectSelected, 'ahuber', -1, 2, 0, 3, 2, Row, Column, Radius, StartPhi, EndPhi, PointOrder)将线条

19、拟合成圆,得到位置和半径。gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, rad(360), 'positive', 1.0)生成一个圆get_contour_global_attrib_xld (ObjectSelected, 'cont_approx', Attrib)返回线条的全局属性值,当Attrib<0时线条是直线,当Attrib>0时是圆弧。clip_contours_xld (Lines, LinesClipped, Top, Left, Bottom, Right

20、)选择一定区域内的线条clip_end_points_contours_xld (EllipseContour, ClippedContoursLength, 'length', 20)去除线条两端的部分像素。region_to_bin (Rectangle, BinImage, 130, 100, 120, 130)将区域转换成具有固定灰度值的图像paint_gray (SmoothedImage, BinImage, Image)将一图图像绘制到另一幅图像上。union_collinear_contours_xld (RegressContours, UnionContou

21、rs, 10, 1, 2, 0.1, 'attr_keep')连接共线的线条。gen_contour_polygon_xld (Contour4, 200,200,300,300,200, 320,450,450,300,300)生成任意多边曲线close_contours_xld (Contours, ClosedContours)让不封闭的线条封闭select_contours_xld (Contours, SelectedContours, 'closed', 0, 20, 0, 0)选择一定条件的线条。crop_contours_xld (Lines,

22、LinesCropped, Top - 0.5, Left - 0.5, Bottom + 0.5, Right + 0.5, 'false')提取出一定范围内的线条。gen_polygons_xld (Contour1, Polygon1, 'ramer', 10)将线条拟合成多边形。dev_set_part (239, 197, 239+17, 197+17)设置显示的区域dev_set_color ('cyan')设置显示的颜色dev_set_draw ('margin')设置显示的区域是填充还是空心的dev_set_sha

23、pe ('ellipse') 设置显示的区域的形状select_region_point (Regions, DestRegions, Row, Column)选择包含指定点的区域gen_contour_region_xld (SelectedRegions, Contours, 'border_holes')根据区域和指定的特征生成轮廓线。dump_window_image (DumpImage, WindowHandle)将窗口的内容截图成图像area_center_points_xld (ClipContours, Area, RowPoints, Col

24、umnPoints)轮廓线所有点计算的中心area_center_xld (ClipContours, Area, Row, Column, PointOrder)轮廓线所有的区域的中心gen_nurbs_interp (Rows, Cols, 0,-10,0,10, 3, CtrlRows, CtrlCols, Knots)根据提供的点拟合成曲线的坐标gen_contour_nurbs_xld (Contour, CtrlRows, CtrlCols, Knots, 'auto', 3, 1, 5)根据拟合的坐标生成轮廓线gen_parallel_contour_xld (E

25、dges, ParallelEdgesAngle, 'contour_normal', 3)根据指定的特征生成相应的平行线。get_grayval_contour_xld (Image, Contour, 'bilinear', Grayval)提取了轮廓线上所有点的灰度值test_subset_region(Region1, Region2 : : : IsSubset)测试一个区域是不是在另一个区域中。subset(Rows,Min)从数组Rows先出Min对应序列的数组create_funct_1d_array (Grayval, Function)根据数

26、组生成一个函数序列local_min_max_funct_1d (Function, 'strict_min_max', 'false', Min, Max)提取出函数序列中的局部最大和最小值。dev_inspect_ctrl (PoseRobotGrasp_ZYX)打开检测窗口dev_close_inspect_ctrl (PoseRobotGrasp_ZYX)关闭检测窗口pose_to_hom_mat3d (PoseCamBase, cam_H_base)将3D位姿转换成一个矩阵。disp_3d_coord_system (WindowHandle, Cam

27、Param, PoseCamRef, 0.01)根据内参和外参显示3D坐标系concat_obj (Lines, Contour, Lines)将对象合并,可以分类时将属性相同的人为合并成一类。gen_parallels_xld (Polygon, ParallelLines, 50, 100, rad(10), 'true')找到平行的轮廓线get_parallels_xld (ParallelLines, Row1, Col1, Length1, Phi1, Row2, Col2, Length2, Phi2)得到平行轮廓线的相关坐标。affine_trans_point_

28、3d (cam_H_ref, GraspPointsX_ref, GraspPointsY_ref, 0, 0, GraspPointsX_cam, GraspPointsY_cam, GraspPointsZ_cam)对点进行3D变换。project_3d_point (GraspPointsX_cam, GraspPointsY_cam, GraspPointsZ_cam, CamParam, GraspPointsRow, GraspPointsCol)将空间的3D坐标变换到图像坐标union_cocircular_contours_xld (ContoursSplit, UnionCo

29、ntours, 0.9, 0.5, 0.5, 200, 50, 50, 'true', 1)将属于同一个圆的轮廓线连接起来sort_index(Length)|Length|-1+1找出最大值对应的索引polar_trans_image (ImageReduced, ImagePolar, Row, Column, PolarResolution, Radius+5)把图像由笛卡尔坐标转换成极坐标下图像,及把圆环形的图像区域转换成矩形区域。polar_trans_region_inv (RegionUnion, XYTransRegion, Row, Column, 6.283

30、19, 0, Radius-RingSize, Radius, 640, RingSize, 1280, 1024, 'nearest_neighbor') 把图像由极坐标坐标转换成笛卡尔下图像,及把矩形的图像区域转换成圆环形区域。rotate_image (ImagePart, ImageRotate, 90, 'constant')将图像旋转90度lines_color (Image, Lines, 3.5, 0, 12, 'true', 'false')检测图像中颜色线条,并提取出它们的宽度。Measure_circle提取

31、圆弧线的例子:intersection_ll( : : RowA1, ColumnA1, RowA2, ColumnA2, RowB1, ColumnB1, RowB2, ColumnB2 : Row, Column, IsParallel)提取两条交叉直线交叉点的坐标orientation_region (Region, OrientationRegion)提取区域的方向obj_diff (ConnectedRegions, LeftRegions, RightRegions)提取两组对象中不同的对象。optical_flow_mg (Image1, Image2, VectorField,

32、 'clg', 1, 1, 1000, 5, 'default_parameters', 'fast')计算两幅图像中的视觉差异,用于监控。vector_field_length (VectorField, LengthImage, 'squared_length')计算向量的长度,得到差异图像。local_max_sub_pix (ImageReduced, 'facet', 1.0, 4, Row, Column)提取出图像中灰度极大值的坐标mod_parallels_xld (ParallelRoadEdge

33、s, Part, ModParallelRoadEdges, ExtParallelRoadEdges, 0.3, 160, 220, 10)修补平行的轮廓线split_contours_xld (Polygons, SplitContours, 'polygon', 1, 5)regress_contours_xld (SplitContours, RegressContours, 'drop', 1)select_xld_point (Contours, SelectedContours, PointRow, PointCol)选择包含指定点的轮廓线。sym

34、m_difference_closed_contours_xld (BoundarySet1, BoundarySet2, ContoursDifference)提取封闭对称轮廓线的不同部分test_self_intersection_xld (Contours, 'false', DoesIntersect)检测轮廓线本身是否存在交叉点test_xld_point (Contour1, PointRow, PointCol, IsInsideContour1)测试提供的点是否被轮廓线包含在内union2_closed_contours_xld (BoundarySet1, B

35、oundarySet2, ContoursUnion)从多条轮廓线中合并成封闭的轮廓线union2_closed_polygons_xld (BoundarySet1, BoundarySet2, PolygonsUnion)从多个多边形的轮廓线中提取封闭的轮廓线。union_cotangential_contours_xld (ContourConcat4, UnionContours4, FitClippingLength, FitLength, TestMaxTangAngle, MaxDist, MaxDistPerp, MaxOverlap, 'attr_forget'

36、;)tile_images (Images4, TiledImage3, 2, 'horizontal')将幅图像合并成一幅图像select_contours_xld (RegressContours, SelectedContours, 'curvature', 0, 0.5, 0, 0)根据线的特征选择轮廓线。select_shape_xld (SelectedContours, SelectedEdges, 'contlength', 'and', 15, 500)根据线的形态特征选择轮廓线。vector_to_proj_h

37、om_mat2d (RowUL,RowUR,RowLR,RowLL+0.5, ColUL,ColUR,ColLR,ColLL+0.5, 160,160,340,340+0.5, 250,550,550,250+0.5, 'normalized_dlt', , , , , , , HomMat2D, Covariance)根据图像坐标和实际坐标得到坐标的变换关系。union_collinear_contours_ext_xld (UnionContours, UnionContours, MaxDistAbs, MaxDistRel, 5, 0.5, 0, -1, 1, 1, 1

38、, 1, 1, 0, 'attr_keep')连接同线的轮廓线,提取的轮廓比union_collinear_contours_xld更精准。orientation_points_xld (WireSegment, RefOrientation)corner_response (ImaAmp, ImageCorner, 3, 0.04)提取图像中的角gen_parallels_xld (Polygon, ParallelLines, 50, 100, rad(10), 'true')找到平行的直线十.双目视觉系统标定 (2012-04-25 00:45:

39、33)转载标签: it halcon 计算机视觉 机器视觉1.get_image_pointer1(Image : : : Pointer, Type, Width, Height)返回第一通道的点,图像数据类型,图像尺寸。2.disp_image(Image : : WindowHandle : )在输出窗口显示灰度图像3.visualize_results_of_find_marks_and_pose (ImageL, WindowHandle1, RCoordL, CC

40、oordL, StartPoseL, StartCamParL)内部函数,显示初步标定的坐标系和MARKS中心,MARKS中线用十字线标出。4.set_calib_data_observ_points( : : CalibDataID, CameraIdx, CalibObjIdx,CalibObjPoseIdx, Row, Column, Index, Pose : )储存以点为基础的标定观测值,将观测值储存与标定数据句柄中。5.calibrate_cameras( : : CalibDataID

41、60;: Error)根据标定数据模型中的值标定摄像机。6.get_calib_data( : : CalibDataID, ItemType, ItemIdx, DataName : DataValue)查询储存或计算得到的标定模型中的数据。7.write_cam_par( : : CameraParam, CamParFile : )把相机内参数写入TXT文件8.write_pose( : : Pose, PoseFile : )把相机的位姿写入TXT文件9.g

42、en_binocular_rectification_map( : Map1, Map2 : CamParam1, CamParam2, RelPose,SubSampling, Method, MapType : CamParamRect1, CamParamRect2, CamPoseRect1,CamPoseRect2, RelPoseRect)把相机参数和姿态作为输入,输出为校正图像和矫正后的参数和姿态。10.map_image(Image, Ma

43、p : ImageMapped : : )dev_update_window ('off')* Set the image pathImgPath := '3d_machine_vision/stereo/'* Read the first images to get their sizei := 0read_image (ImageL, ImgPath+'calib_distorted_l_'+i$'03d')read_image (ImageR, ImgPath+'calib_distor

44、ted_r_'+i$'03d') /分别读取左右目图像,编号长3位/* Reopen the windows with an appropriate sizedev_close_window ()dev_close_window ()get_image_pointer1 (ImageL, PointerL, TypeL, WidthL, HeightL)get_image_pointer1 (ImageR, PointerR, TypeR, WidthR, HeightR)dev_open_window (0, 0, WidthL, HeightL, '

45、;black', WindowHandle1)dev_open_window (0, WidthL+5, WidthL, HeightL, 'black', WindowHandle2)/为左右目各打开一                               

46、                                         个图形窗口/* Set the calibration plate description fileCalt

47、abName := 'caltab_30mm.descr'* Set the initial values for the interior camera parametersStartCamParL := 0.0125, 0, 7.4e-6, 7.4e-6,WidthL/2.0,HeightL/2.0,WidthL,HeightLStartCamParR := StartCamParL* parameter settings for find_caltab and find_marks_and_poseSizeGauss := 3MarkThresh := 120MinDia

48、mMarks := 5StartThresh := 128DeltaThresh := 10MinThresh := 18Alpha := 0.9MinContLength := 15MaxDiamMarks := 100* Create a calibration data model in which all calibration data* including the image coordinates of the calibration marks and* the observation poses of the calibration plate will be* accumu

49、latedcreate_calib_data ('calibration_object', 2, 1, CalibDataID)      /创建标定数据模型句柄/set_calib_data_cam_param (CalibDataID, 0, 'area_scan_division', StartCamParL)/在标定模型中              

50、0;                                                 

51、0;    设置相机的类型和原始参数/set_calib_data_cam_param (CalibDataID, 1, 'area_scan_division', StartCamParR)set_calib_data_calib_object (CalibDataID, 0, CaltabName)        /定义一个标定对象/* Start the loop over the calibration imagesfor i := 0 to 10 b

52、y 1    * Read and display the calibration images    read_image (ImageL, ImgPath+'calib_distorted_l_'+i$'03d')    read_image (ImageR, ImgPath+'calib_distorted_r_'+i$'03d')    disp_image (Im

53、ageL, WindowHandle1)    disp_image (ImageR, WindowHandle2)                         /读取并显示图像/    * Search for the calibration plate 

54、; find_caltab (ImageL, CaltabL, CaltabName, SizeGauss, MarkThresh, MinDiamMarks)  find_caltab (ImageR, CaltabR, CaltabName, SizeGauss, MarkThresh, MinDiamMarks)/输出标定板区域/    disp_region (CaltabL, WindowHandle1)    disp_region (CaltabR, WindowHand

55、le2)                     /显示标定区域/              * Extract the calibration marks and estimate an initial pose   

56、 find_marks_and_pose (ImageL, CaltabL, CaltabName, StartCamParL, StartThresh, DeltaThresh, MinThresh, Alpha, MinContLength, MaxDiamMarks, RCoordL, CCoordL, StartPoseL)    * Visualize the extracted calibration marks and the    * coordinate system defined b

57、y the estimated pose.    visualize_results_of_find_marks_and_pose (ImageL, WindowHandle1, RCoordL, CCoordL, StartPoseL, StartCamParL)                      /显示初步标定的坐标系和MAR

58、KS中心/    * Extraction of marks and pose as well as visualization of the    * results for the second image.    find_marks_and_pose (ImageR, CaltabR, CaltabName, StartCamParR, StartThresh, DeltaThresh, MinThresh, Alpha, MinContLength, MaxDiam

59、Marks, RCoordR, CCoordR, StartPoseR)    visualize_results_of_find_marks_and_pose (ImageR, WindowHandle2, RCoordR, CCoordR, StartPoseR, StartCamParR)    * Store the image coordinates of the calibration marks as well    * as the estimated ini

60、tial poses for all stereo pairs in the    * calibration data model    *  - Camera 0 is the (L)eft camera    *  - Camera 1 is the (R)ight camera    set_calib_data_observ_points (CalibDataID, 0, 0, i, R

61、CoordL, CCoordL, 'all', StartPoseL)    set_calib_data_observ_points (CalibDataID, 1, 0, i, RCoordR, CCoordR, 'all', StartPoseR)                       

62、;                                 /在标定数据模型句柄中储存标定结果/endfor* Perform the actual calibrationcalibrate_cameras (CalibDataID, Errors) 

63、        /根据标定数据模型中的值标定摄像机/* Get the calibrated camera parametersget_calib_data (CalibDataID, 'camera', 0, 'params', CamParamL)get_calib_data (CalibDataID, 'camera', 1, 'params', CamParamR)      /获取摄

64、像机参数/* Since the left camera is the reference camera for the* calib data model, the pose of the right camera is its* pose relative to the left cameraget_calib_data (CalibDataID, 'camera', 1, 'pose', cLPcR)    /获取右目相对于左目的位姿/* Store the results into fileswrite_cam_p

65、ar (CamParamL, 'cam_left-125.dat')write_cam_par (CamParamR, 'cam_right-125.dat')write_pose (cLPcR, 'pos_right2left.dat')                    /将相机参数写入文件/* Generate the rectificat

66、ion mapsgen_binocular_rectification_map (MapL, MapR, CamParamL, CamParamR, cLPcR, 1, 'geometric', 'bilinear', RectCamParL, RectCamParR, CamPoseRectL, CamPoseRectR, RectLPosRectR) /把相机参数和姿态作为输入,输出为校正图像和矫正后的参数和姿态。/* Read in a stereo image pair, aquired with the stereo camera syste

67、m,* which has been calibrated, just now.read_image (ImageL, ImgPath+'caliper_distorted_l')read_image (ImageR, ImgPath+'caliper_distorted_r')* Rectify the stereo images and display themmap_image (ImageL, MapL, ImageRectifiedL)map_image (ImageR, MapR, ImageRectifiedR)dev_set_window (Wi

68、ndowHandle1)dev_clear_window ()dev_display (ImageRectifiedL)dev_set_window (WindowHandle2)dev_clear_window ()dev_display (ImageRectifiedR)disp_continue_message (WindowHandle1, 'black', 'true')stop ()dev_set_window (WindowHandle2)dev_close_window ()dev_update_window ('on')dev_

69、set_window (WindowHandle1)dev_clear_window ()dev_display (ImageRectifiedL)clear_calib_data (CalibDataID)十二.图像获取与相关参数(halcon) (2012-04-25 21:02:38)转载标签: it halcon 计算机视觉 机器视觉图像获取程序例1.1.set_system( : : SystemParameter, Value : )设置系统参数2.open_framegrabber ( : : Name, HorizontalResolution,Vertical

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论