备考2022数学专题34 动态问题(解析版)_第1页
备考2022数学专题34 动态问题(解析版)_第2页
备考2022数学专题34 动态问题(解析版)_第3页
备考2022数学专题34 动态问题(解析版)_第4页
备考2022数学专题34 动态问题(解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题34 动态问题 专题知识回顾 一、动态问题概述1.就运动类型而言,有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。2.就运动对象而言,几何图形中的动点问题,有点动、线动、面动三大类。3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。另一类就是几何综合题,在梯形,矩形,三角形

2、中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。二、动点与函数图象问题常见的四种类型: 1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。三、图形运动与函数图象问题常见的三种类型: 1.

3、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。四、动点问题常见的四种类型:1.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;

4、第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。2.四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系。3.这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

5、如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?3.圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系。4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题。五、解决动态问题一般步骤:(1)用数量来刻画运动过程。因为在不同的运动阶段,同一个量的数学表达方式会发生变化,所以需要分类讨论。有时符合试题要求的情况不止一种,这时也需要分类讨论。(2)画出符合题意的示意图。(3)根据试题的已知条件或者要求列出算式、方程或者数量间的关系式。专题典型

6、题考法及解析 【例题1】(点动题)如图,在矩形 abcd 中,ab6,bc8,点e 是 bc 中点,点 f 是边 cd 上的任意一点,当aef 的周长最小时,则 df 的长为( )a.1 b.2 c.3 d.4【答案】d 【解析】如图,作点e 关于直线cd 的对称点 e,连接 ae,交 cd 于点 f.在矩形 abcd 中,ab6,bc8,点 e 是 bc 中点,becece4.abbc,cdbc,cfab,cefbea.ce/be=cf/ab4/(8+4)=cf/6解得 cf2.dfcdcf624.热点二:线动 【例题2】(线动题)如图 ,量角器的直径与直角三角板 abc 的斜边 ab 重合

7、,其中量角器 0 刻度线的端点 n 与点 a 重合,射线 cp 从 ca 处出发沿顺时针方向以每秒 3°的速度旋转,cp 与量角器的半圆弧交于点 e,第 24 秒,点 e 在量角器上对应的读数是_【答案】144°【解析】连接 oe,acb90°,a,b,c 在以点 o 为圆心,ab 为直径的圆上点 e,a,b,c 共圆ace3°×2472°,aoe2ace144°.点 e 在量角器上对应的读数是 144°.【例题3】(面动题)如图 z10-4,将一个边长为 2 的正方形 abcd 和一个长为 2,宽为 1 的长方形

8、 cefd 拼在一起,构成一个大的长方形 abef.现将小长方形 cefd 绕点 c 按顺时针旋转至 cefd,旋转角为.(1)当点 d恰好落在 ef 边上时,求旋转角的值;(2)如图 z10-5,g 为 bc 中点,且 0°90°,求证:gded;(3)小长方形 cefd 绕点 c 按顺时针旋转一周的过程中, dcd与cbd能否全等?若能,直接写出旋转角的值;若不能,请说明理由 【答案】见解析。【解析】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角也考查了正方形、矩形的性质以及三角形全等的判定与性质(1)长方

9、形 cefd 绕点 c 顺时针旋转至 cefd,cdcd2.在 rtced中,cd2,ce1,cde30°.cdef,30°.(2)证明:g 为 bc 中点,cg1.cgce.长方形 cefd 绕点 c 顺时针旋转至 cefd,dcedce90°,cececg.gcdecd90°.(3)能理由如下:四边形 abcd 为正方形,cbcd.cdcd,bcd 与 dcd为腰相等的两个等腰三角形当bcddcd时,bcddcd.当bcd与dcd为钝角三角形时,当bcd与dcd为锐角三角形时,综上所述,当旋转角a的值为135°或315°时,dcd

10、与cbd全等 专题典型训练题 一.选择题1.(2019四川省达州市)如图,边长都为4的正方形abcd和正三角形efg如图放置,ab与ef在一条直线上,点a与点f重合现将efg沿ab方向以每秒1个单位的速度匀速运动,当点f与b重合时停止在这个运动过程中,正方形abcd和efg重叠部分的面积s与运动时间t的函数图象大致是()abcd【答案】c【解析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决当0t2时,s,即s与t是二次函数关系,有最小值(0,0),开口向上,当2t4时,s,即s与t是二次函数关系,开口向下,由上可得,选项c符合题意。2(20

11、19山东泰安)如图,矩形abcd中,ab4,ad2,e为ab的中点,f为ec上一动点,p为df中点,连接pb,则pb的最小值是()a2b4cd【答案】d【解析】根据中位线定理可得出点点p的运动轨迹是线段p1p2,再根据垂线段最短可得当bpp1p2时,pb取得最小值;由矩形的性质以及已知的数据即可知bp1p1p2,故bp的最小值为bp1的长,由勾股定理求解即可如图:当点f与点c重合时,点p在p1处,cp1dp1,当点f与点e重合时,点p在p2处,ep2dp2,p1p2ce且p1p2ce当点f在ec上除点c、e的位置处时,有dpfp由中位线定理可知:p1pce且p1pcf点p的运动轨迹是线段p1p

12、2,当bpp1p2时,pb取得最小值矩形abcd中,ab4,ad2,e为ab的中点,cbe、ade、bcp1为等腰直角三角形,cp12adecdecp1b45°,dec90°dp2p190°dp1p245°p2p1b90°,即bp1p1p2,bp的最小值为bp1的长在等腰直角bcp1中,cp1bc2bp12pb的最小值是23(2019山东潍坊)如图,在矩形abcd中,ab2,bc3,动点p沿折线bcd从点b开始运动到点d设运动的路程为x,adp的面积为y,那么y与x之间的函数关系的图象大致是()abcd【答案】d【解析】由题意当0x3时,y3,

13、当3x5时,y×3×(5x)x+由此即可判断由题意当0x3时,y3,当3x5时,y×3×(5x)x+4.(2019湖北武汉)如图,ab是o的直径,m、n是(异于a.b)上两点,c是上一动点,acb的角平分线交o于点d,bac的平分线交cd于点e当点c从点m运动到点n时,则c.e两点的运动路径长的比是()abcd【答案】a【解析】本题考查弧长公式,圆周角定理,三角形的内心等知识,解题的关键是理解题意,正确寻找点的运动轨迹,属于中考选择题中的压轴题如图,连接eb设oar易知点e在以d为圆心da为半径的圆上,运动轨迹是,点c的运动轨迹是,由题意mon2gdf,

14、设gdf,则mon2,利用弧长公式计算即可解决问题ab是直径,acb90°,e是acb的内心,aeb135°,acdbcd,addbr,adb90°,易知点e在以d为圆心da为半径的圆上,运动轨迹是,点c的运动轨迹是,mon2gdf,设gdf,则mon25.(2019湖南衡阳)如图,在直角三角形abc中,c90°,acbc,e是ab的中点,过点e作ac和bc的垂线,垂足分别为点d和点f,四边形cdef沿着ca方向匀速运动,点c与点a重合时停止运动,设运动时间为t,运动过程中四边形cdef与abc的重叠部分面积为s则s关于t的函数图象大致为()a b c

15、d 【答案】c【解析】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型根据已知条件得到abc是等腰直角三角形,推出四边形efcd是正方形,设正方形的边长为a,当移动的距离a时,如图1,s正方形的面积eeh的面积a2t2;当移动的距离a时,如图2,ssach(2at)2t22at+2a2,根据函数关系式即可得到结论;在直角三角形abc中,c90°,acbc,abc是等腰直角三角形,efbc,edac,四边形efcd是矩形,e是ab的中点,efac,debc,efed,四边形efcd是正方形,设正方形的边长为a,如图1当

16、移动的距离a时,s正方形的面积eeh的面积a2t2;当移动的距离a时,如图2,ssach(2at)2t22at+2a2,s关于t的函数图象大致为c选项。6.(2019浙江衢州)如图所示,正方形abcd的边长为4,点e是ab的中点,点p从点e出发,沿eadc移动至终点c,设p点经过的路径长为x,cpe的面积为y,则下列图象能大致反映y与x函数关系的是(  ) a      b      c     d【答案】 c 【解析】动点问题的函数图象。结合题

17、意分情况讨论:当点p在ae上时,当点p在ad上时,当点p在dc上时,根据三角形面积公式即可得出每段的y与x的函数表达式. 当点p在ae上时, 正方形边长为4,e为ab中点,ae=2,p点经过的路径长为x,pe=x,y=scpe= ·pe·bc= ×x×4=2x,当点p在ad上时,正方形边长为4,e为ab中点,ae=2,p点经过的路径长为x,ap=x-2,dp=6-x,y=scpe=s正方形abcd-sbec-sape-spdc , =4×4- ×2×4- ×2×(x-2)- ×4×(6

18、-x),=16-4-x+2-12+2x,=x+2,当点p在dc上时,正方形边长为4,e为ab中点,ae=2,p点经过的路径长为x,pd=x-6,pc=10-x,y=scpe= ·pc·bc= ×(10-x)×4=-2x+20,综上所述:y与x的函数表达式为:y= .7.(2019甘肃武威)如图,在矩形abcd中,abad,对角线ac,bd相交于点o,动点p由点a出发,沿abbccd向点d运动设点p的运动路程为x,aop的面积为y,y与x的函数关系图象如图所示,则ad边的长为()a3b4c5d6【答案】b【解析】本题主要考查动点问题的函数图象,解题的关键是

19、分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值当p点在ab上运动时,aop面积逐渐增大,当p点到达b点时,aop面积最大为3ab3,即abbc12当p点在bc上运动时,aop面积逐渐减小,当p点到达c点时,aop面积为0,此时结合图象可知p点运动路径长为7,ab+bc7则bc7ab,代入abbc12,得ab27ab+120,解得ab4或3,因为abad,即abbc,所以ab3,bc48.(2019甘肃省天水市)已知点p为某个封闭图形边界上一定点,动点m从点p出发,沿其边界顺时针匀速运动一周,设点m的运动时间为x,线段pm的长度为y,表示y与x的函数图象大致如

20、图所示,则该封闭图形可能是()a. b. c. d. 【答案】d【解析】y与x的函数图象分三个部分,而b选项和c选项中的封闭图形都有4条线段,其图象要分四个部分,所以b.c选项不正确;a选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以a选项不正确;d选项为三角形,m点在三边上运动对应三段图象,且m点在p点的对边上运动时,pm的长有最小值二、填空题9.(2019浙江嘉兴)如图,一副含30°和45°角的三角板abc和edf拼合在个平面上,边ac与ef重合,ac12cm当点e从点a出发沿ac方向滑动时,点f同时从点c出发沿射线bc方向滑动当点e从点a滑动

21、到点c时,点d运动的路径长为 cm;连接bd,则abd的面积最大值为 cm2【答案】(2412),(24+3612)【解析】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点d的运动轨迹是本题的关键ac12cm,a30°,def45°bc4cm,ab8cm,eddf6cm如图当点e沿ac方向下滑时,得e'd'f',过点d'作d'nac于点n,作d'mbc于点mmd'n90°,且e'd'f'90°e'd'n

22、f'd'm,且d'ne'd'mf'90°,e'd'd'f'd'ne'd'mf'(aas)d'nd'm,且d'nac,d'mcmcd'平分acm即点e沿ac方向下滑时,点d'在射线cd上移动,当e'd'ac时,dd'值最大,最大值edcd(126)cm当点e从点a滑动到点c时,点d运动的路径长2×(126)(2412)cm如图,连接bd',ad',sad'bsabc+sa

23、d'csbd'csad'bbc×ac+×ac×d'n×bc×d'm24+(124)×d'n当e'd'ac时,sad'b有最大值,sad'b最大值24+(124)×6(24+3612)cm210.(2019四川省广安市)如图,在四边形中,,直线.当直线沿射线方向,从点开始向右平移时,直线与四边形的边分别相交于点、.设直线向右平移的距离为,线段的长为,且与的函数关系如图所示,则四边形的周长是 . 【答案】【解析】由题意和图像易知bc=5,ad=7-4

24、=3当be=4时(即f与a重合),ef=2,又因为且b=30°,所以ab=,因为当f与a重合时,把cd平移到e点位置可得三角形aed为正三角形,所以cd=2,故答案时.11(2019山东潍坊)如图,直线yx+1与抛物线yx24x+5交于a,b两点,点p是y轴上的一个动点,当pab的周长最小时,spab 【答案】【解析】本题考查二次函数的性质、一次函数的性质、轴对称最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答根据轴对称,可以求得使得pab的周长最小时点p的坐标,然后求出点p到直线ab的距离和ab的长度,即可求得pab的面积,本题得以解决,解得,或,点a的坐标为(1,2

25、),点b的坐标为(4,5),ab3,作点a关于y轴的对称点a,连接ab与y轴的交于p,则此时pab的周长最小,点a的坐标为(1,2),点b的坐标为(4,5),设直线ab的函数解析式为ykx+b,得,直线ab的函数解析式为yx+,当x0时,y,即点p的坐标为(0,),将x0代入直线yx+1中,得y1,直线yx+1与y轴的夹角是45°,点p到直线ab的距离是:(1)×sin45°,pab的面积是:,三、解答题12.(2019湖北省仙桃市)如图,在平面直角坐标系中,四边形oabc的顶点坐标分别为o(0,0),a(12,0),b(8,6),c(0,6)动点p从点o出发,以

26、每秒3个单位长度的速度沿边oa向终点a运动;动点q从点b同时出发,以每秒2个单位长度的速度沿边bc向终点c运动设运动的时间为t秒,pq2y(1)直接写出y关于t的函数解析式及t的取值范围: ;(2)当pq3时,求t的值;(3)连接ob交pq于点d,若双曲线y(k0)经过点d,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由【答案】见解析。【解析】本题考查了勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当pq3时t的值;(3)利用相

27、似三角形的性质及解直角三角形,找出点d的坐标(1)过点p作pebc于点e,如图1所示当运动时间为t秒时(0t4)时,点p的坐标为(3t,0),点q的坐标为(82t,6),pe6,eq|82t3t|85t|,pq2pe2+eq262+|85t|225t280t+100,y25t280t+100(0t4)故答案为:y25t280t+100(0t4)(2)当pq3时,25t280t+100(3)2,整理,得:5t216t+110,解得:t11,t2(3)经过点d的双曲线y(k0)的k值不变连接ob,交pq于点d,过点d作dfoa于点f,如图2所示oc6,bc8,ob10bqop,bdqodp,od6

28、cboa,dofobc在rtobc中,sinobc,cosobc,ofodcosobc6×,dfodsinobc6×,点d的坐标为(,),经过点d的双曲线y(k0)的k值为×13(2019山东青岛)已知:如图,在四边形abcd中,abcd,acb90°,ab10cm,bc8cm,od垂直平分a c点p从点b出发,沿ba方向匀速运动,速度为1cm/s;同时,点q从点d出发,沿dc方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动过点p作peab,交bc于点e,过点q作qfac,分别交ad,od于点f,g连接op,eg设运动时间为t(s)(

29、0t5),解答下列问题:(1)当t为何值时,点e在bac的平分线上?(2)设四边形pego的面积为s(cm2),求s与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形pego的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接oe,oq,在运动过程中,是否存在某一时刻t,使oeoq?若存在,求出t的值;若不存在,请说明理由【答案】见解析。【解析】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型(1)在rtabc中,acb90°,ab10cm,bc8

30、cm,ac6(cm),od垂直平分线段ac,ocoa3(cm),doc90°,cdab,bacdco,docacb,docbca,cd5(cm),od4(cm),pbt,peab,易知:pet,bet,当点e在bac的平分线上时,epab,ecac,peec,t8t,t4当t为4秒时,点e在bac的平分线上(2)如图,连接oe,pcs四边形opegsoeg+sopesoeg+(sopc+spcesoec)(4t)3+3(8t)+(8t)t3(8t)t2+t+16(0t5)(3)存在s(t)2+(0t5),t时,四边形opeg的面积最大,最大值为(4)存在如图,连接oqoeoq,eoc

31、+qoc90°,qoc+qog90°,eocqog,taneoctanqog,整理得:5t266t+1600,解得t或10(舍弃)当t秒时,oeoq14.((2019山西)综合与探究如图,抛物线经过点a(-2,0),b(4,0)两点,与轴交于点c,点d是抛物线上一个动点,设点d的横坐标为.连接ac,bc,db,dc.(1) 求抛物线的函数表达式;(2) bcd的面积等于aoc的面积的时,求的值;(3) 在(2)的条件下,若点m是轴上的一个动点,点n是抛物线上一动点,试判断是否存在这样的点m,使得以点b,d,m,n为顶点的四边形是平行四边形,若存在,请直接写出点m的坐标;若不

32、存在,请说明理由.【答案】见解析。【解析】(1)抛物线经过点a(-2,0),b(4,0),解得,抛物线的函数表达式为(2)作直线de轴于点e,交bc于点g,作cfde,垂足为f.点a的坐标为(-2,0),oa=2由,得,点c的坐标为(0,6),oc=6soac=,sbcd=saoc=设直线bc的函数表达式为,由b,c两点的坐标得,解得直线bc的函数表达式为.点g的坐标为点b的坐标为(4,0),ob=4sbcd=scdg+sbdg=,解得(舍),的值为3(3)如下图所示,以bd为边或者以bd为对角线进行平行四边形的构图以bd为边进行构图,有3种情况,采用构造全等发进行求解.d点坐标为,所以的纵坐

33、标为,解得(舍)可得的纵坐标为时,以bd为对角线进行构图,有1种情况,采用中点坐标公式进行求解.15.(2019湖南岳阳)操作体验:如图,在矩形abcd中,点e.f分别在边ad.bc上,将矩形abcd沿直线ef折叠,使点d恰好与点b重合,点c落在点c处点p为直线ef上一动点(不与e.f重合),过点p分别作直线be.bf的垂线,垂足分别为点m和n,以pm、pn为邻边构造平行四边形pmqn(1)如图1,求证:bebf;(2)特例感知:如图2,若de5,cf2,当点p在线段ef上运动时,求平行四边形pmqn的周长;(3)类比探究:若dea,cfb如图3,当点p在线段ef的延长线上运动时,试用含a.b

34、的式子表示qm与qn之间的数量关系,并证明;如图4,当点p在线段fe的延长线上运动时,请直接用含a.b的式子表示qm与qn之间的数量关系(不要求写证明过程)【答案】见解析。【解析】本题属于四边形综合题,考查了矩形的性质和判定,翻折变换,等腰三角形的性质,平行四边形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,学会利用面积法证明线段之间的关系,属于中考压轴题(1)证明befbfe即可解决问题(也可以利用全等三角形的性质解决问题即可)证明:如图1中,四边形abcd是矩形,adbc,defefb,由翻折可知:defbef,befefb,bebf(2)如图2中,连

35、接bp,作ehbc于h,则四边形abhe是矩形利用面积法证明pm+pneh,利用勾股定理求出ab即可解决问题如图2中,连接bp,作ehbc于h,则四边形abhe是矩形,ehabdeebbf5,cf2,adbc7,ae2,在rtabe中,a90°,be5,ae2,ab,sbefspbe+spbf,pmbe,pnbf,bfehbepm+bfpn,bebf,pm+pneh,四边形pmqn是平行四边形,四边形pmqn的周长2(pm+pn)2(3)如图3中,连接bp,作ehbc于h由sebpsbfpsebf,可得bepmbfpnbfeh,由bebf,推出pmpneh,由此即可解决问题如图4,当点p在线段fe的延长线上运动时,同法可证:qmqnpnpm证明:如图3中,连接bp,作ehbc于hedebbfa,cfb,adbca+b,aeaddeb,ehab,sebpsbfpsebf,bepmbfpnbfeh,bebf,pmpneh,四边形pmqn是平行四边形,qnqm(p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论