付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = tanAtanBtan(A-B) = tanAtanB1- tanAtanB1tanAtanBcotAcotB -1cotAcotB 1cot(A+B) =cotAcot(A-B) =cotAcotBcotB2、倍角公式tan2A =2tanASin2A=2SinA?CosA1tan 2 ACos2A = Cos2A-Sin 2A=2Co
2、s2A-1=1-2sin2A3、半角公式sin( A )=1cos Acos( A )=1cosA2222tan( A )=1cos Acot( A )=1cos Atan( A )= 1 cos A =sin A21cosA21cosA2sin A1 cos A4、诱导公式sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos( -a) = sinasin(+a) = cosa cos(+a) = -sina2222sin(-a) = sinacos( -a) = -cosasin( +a)-sina=cos( +a) -=cosatgA=tanA =
3、sin acos a5、万能公式2tan a1(tan a) 22 tan asina=2cosa=2tana=21 (tan a ) 21(tan a) 21(tan a ) 22226、其他非重点三角函数csc(a) =1sec(a) =1sin acosa7、(ab)的三次方 ,(ab)的三次方公式(a+b)3=a3+3a2b+3ab2+b3(a-b)3=a3-3a2b+3ab2-b3a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)8、反三角函数公式arcsin(-x)=-arcsinxarccos(-x)= arccosxarctan(-x)=-ar
4、ctanxarccot(-x)= arccotxarcsinx+arccosx=/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当 x /2,/2时,有 arcsin(sinx)=x 当 x 0, ,arccos(cosx)=xx ( /2,/2),arctan(tanx)=xx (0,),arccot(cotx)=xx 0,arctanx= -arctan1/x,arccotx/2 类似若(arctanx+arctany) ( /2,/2),则 arctanx+arctany=arctan(x+y/
5、1-xy)9、三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)2(secx)'=secxtanx(cotx)'=-(cscx)2(cscx)'=-csxcotx(arcsinx)'=1/-x2)(1(arccosx)'=-1/ (1-x2)(arctanx)'=1/(1+x2)(arccotx)'=-1/(1+x2)10、基本求导公式(C )0 (C 为常数)( xn )nxn 1 ;一般地, ( x )x1 。特别地:2) 2x1)1, (x )21。( x)1, (
6、x, ( xx2x(ex )ex ;一般地, (a x )a xln a (a0,a1)。(ln x)1 ;一般地, (log a x)1( a0, a1)。xx ln a11、求导法则 四则运算法则设 f(x),g(x)均在点 x 可导,则有:() ( f ( x)g( x)f (x)g (x) ;() ( f ( x)g ( x)f ( x) g( x) f ( x)g ( x) ,特别 (Cf ( x)C f( x) ( C 为常数);()(f (x)f ( x) g( x)f ( x)g ( x) ,( )0) ,特别(1g ( x)。)g 2 (x)g x)2 ( x)g(x)g(x
7、)g12、微分函数 yf ( x) 在点 x 处的微分: dyy dxf ( x)dx13、积分公式常用的不定积分公式:x dx1x 1C (1),dx xc, xdxx 2c, x 2 dxx3( 1)x4123 ;x3dxc4( 2)1 dxln | x | C ;ex dxexC ;a x dxa xC (a 0, a1) ;xln a(3) kf ( x)dx kf ( x)dx ( k 为常数)定积分:bf ( x)dxF (x) |baF (b)ab k1 f ( x)k 2 g (x) dxaF ( a)bbk1 af (x)dxk2 ag( x)dx分部积分法:设 u(x),v(x)在 a,b上具有连续导数 u (x), v (x) ,则bbba u( x) dv( x)u(x)v( x) aa v(x)du(x)14、重要的等价无穷小替换:当 x0时,sinxxtan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南时空信息安全检测服务有限公司2025年面向社会公开招聘备考题库及答案详解参考
- 汕头大学医学院口腔医院2025年办公室工作人员招聘备考题库及参考答案详解一套
- 2025年攀枝花市仁和区紧密型县域医共体招聘备考题库及答案详解参考
- 高中政治文化生活试题及答案
- 2025年乌鲁木齐自然资源综合调查中心新一批招聘备考题库及参考答案详解1套
- 财务半年的工作总结2023-1
- 2025年大连商品交易所招聘备考题库及一套答案详解
- 河源市龙川县人民医院2026年招聘合同制工作人员50人备考题库及参考答案详解1套
- 安全拒绝权详解讲解
- 先进安全经验讲解
- 光谷融媒体中心公开招聘工作人员备考考试试题及答案解析
- 2025下半年贵州遵义市市直事业单位选调56人考试笔试备考试题及答案解析
- 门窗合同范本的模板
- 深度解析(2026)《DLT 2121-2020高压直流输电换流阀冷却系统化学监督导则》
- 2025北京日报社招聘10人参考笔试题库及答案解析
- 毕节市织金县化起镇污水处理工程环评报告
- 黑布林英语阅读初一年级16《柳林风声》译文和答案
- 河流动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
- 一年级上册美术测试题
- 常用兽药配伍禁忌一览表
- 2023年一级建造师机电工程管理与实务考试笔记
评论
0/150
提交评论