导数在研究函数中的应用2PPT学习教案_第1页
导数在研究函数中的应用2PPT学习教案_第2页
导数在研究函数中的应用2PPT学习教案_第3页
导数在研究函数中的应用2PPT学习教案_第4页
导数在研究函数中的应用2PPT学习教案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1导数在研究函数中的应用导数在研究函数中的应用2aby=f(x)xoyy=f(x)xoyabf (x)0f (x)0, x(x-1)0, 得得x0 x1x1, 则则f(x)单增区间(单增区间(,0 0), ,(1 1,+)令令x(x-1)0,x(x-1)0,得得0 x1, 0 x1, f(x)单减区单减区(0,2).(0,2).注意注意:求单调区间求单调区间: 1:首先注意首先注意 定义域定义域, 2:其次区间其次区间不能不能用用 ( U) 连接连接(第一步(第一步)解解(第二步(第二步)(第三步(第三步)单调区间27x21-x31f(x)23第2页/共16页 yxOabyf(x)x1

2、f (x1)x2 f(x2)x3 f(x3)x4 f(x4)在在x1 、 x3处函数值处函数值f(x1)、 f(x3) 与与x1 、 x3左右近旁左右近旁各点处各点处的的函数值函数值相比相比,有什么特点有什么特点?f (x2)、 f (x4)比比x2 、x4左右近旁左右近旁各点处的各点处的函数值函数值相比相比呢呢?观察图像观察图像:第3页/共16页一、函数的极值定义一、函数的极值定义设函数设函数f(x)在点在点x0附近有定义,附近有定义,如果对如果对X0附近的所有点,都有附近的所有点,都有f(x)f(x0), 则则f(x0) 是函数是函数f(x)的一个极小值,记作的一个极小值,记作y极小值极小

3、值= f(x0);oxyoxy0 x0 x函数的函数的极大值极大值与与极小值极小值统称统称为为极值极值. (极值即极值即峰谷处峰谷处的值)的值)使函数取得极值的使函数取得极值的点点x0称为称为极值点极值点第4页/共16页 yxO探究:探究:极值点处导数值极值点处导数值(即切线斜率)有何特点?即切线斜率)有何特点?结论结论:极值点处,如果有切线,切线水平的极值点处,如果有切线,切线水平的.即即: f (x)=0aby f(x)x1 x2x3f (x1)=0 f (x2)=0 f (x3)=0 思考;若 f (x0)=0,则,则x0是否为极值点?是否为极值点?x yO分析yx3是极值点吗?)(处,

4、在,得由0, 0003)( ,)(23xfxxxfxxf第5页/共16页极大值极大值极小值极小值即即: 极值点两侧极值点两侧单调性单调性互异互异第6页/共16页 f (x)0 yxOx1aby f(x)极大值点两侧极大值点两侧极小值点两侧极小值点两侧 f (x)0 f (x)0探究探究:极值点两侧极值点两侧导数正负符号导数正负符号有何规律有何规律?x2 xXx2 2 f (x) f(x) xXx1 1 f (x) f(x)增增f (x) 0f (x) =0f (x) 0极大值极大值减减f (x) 0注意注意:(1)f (x0) =0, x0不一定是极值点不一定是极值点(2)只有只有f (x0)

5、 =0且且x0两侧单调性不同不同 , x0才是极值点才是极值点. (3)求求极值点,极值点,可以先求可以先求f (x0) =0的点,的点,再再列表判断单调列表判断单调性性结论:结论:极值点处,极值点处,f (x) =0第7页/共16页例例1:求求 的极值。的极值。44xx31xf3)(第8页/共16页变式变式1 求求 在在 时极值。时极值。44xx31y3), 0 ( x第9页/共16页例题例题2:若若f(x)=ax3+bx2-x在在x=1与与 x=-1 处有极值处有极值.(1)求求a、b的值的值(2)求求f(x)的极值的极值.第10页/共16页?ba,4,1xbxaxxxf23求处极值为在若

6、)(下一张总结详细解答第11页/共16页1: 极值定义2个关键 可导函数y=f(x)在极值点处的f(x)=0 。 极值点左右两边的导数必须异号。3 3个步骤个步骤确定定义域确定定义域求求f(x)=0的根的根并列成表格并列成表格 用方程用方程f(x)=0的根,顺次将函数的定义域分成若干的根,顺次将函数的定义域分成若干个开个开 区间,并列成表格由区间,并列成表格由f(x)在方程在方程f(x)=0的根左的根左右的符号,来判断右的符号,来判断f(x)在这个根处取极值的情况在这个根处取极值的情况思考吗思考吗结束结束第12页/共16页)求极值()求(处极值为在:若变式2)(1?ba,14,1xbxaxxx

7、f23 9b6a , 4b-a-10b-2a-3 4f(1)0(1)f;23)( ) 1 (2解得所以由已知有baxxxf返回总结第13页/共16页注意注意:函数极值是在某一点附近的小区间内定义:函数极值是在某一点附近的小区间内定义的,是的,是局部性质局部性质。因此一个函数在其整个定义区间。因此一个函数在其整个定义区间上可能有上可能有多个极大值或极小值多个极大值或极小值,并对同一个函数来,并对同一个函数来说,在某说,在某一点的极大值也可能小于另一点的极小值一点的极大值也可能小于另一点的极小值。思考思考1. 判断下面判断下面4个命题,其中是真命题序号为个命题,其中是真命题序号为 。 f (x0)=0,则则f (x0)必为必为极值;极值; f (x)= 在在x=0 处取处取极大值极大值0,函数的极小值函数的极小值一定小于一定小于极大值极大值函数的极小值(或极大值)不会多于一个。函数的极小值(或极大值)不会多于一个。函数的极值即为最值函数的极值即为最值结束吗3x下一个思考第1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论