注塑成型理论_第1页
注塑成型理论_第2页
注塑成型理论_第3页
注塑成型理论_第4页
注塑成型理论_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、注塑成型理论序言: 为了在实际生产中能够做到理论指导实践,使更多注塑一线技术人员比较准确地分析故障产生的原因以及对注塑成型有更深刻的理解,特以此篇文章抛砖引玉,望现场技术人员,车间主任能够受此启发,更好地为本公司的发展服务。首先,说说什么是塑料.塑料(plastics)是一种简单的单体(monomers)经由化学聚合反应(polymerization)而成的长链状高分子聚合物(polymers)。根据美国塑料工业协会对于塑料的定义:将全部或部分由碳、氧、氢和氮及其它有机或无机元素使用加热、加压、或两者并用的方式聚合而成,在制造中的阶段是液体,在制造的最后阶段成为固体,此庞大而变化多端的材料族群

2、称为塑料。高分子聚合物加工成为塑件的制程主要包括热塑性塑料之熔化与凝固的物理相态变化或热固性塑料之固化的化学反应两种。简单的高分子材料呈链状结构,其中最重要者首推乙烯基高分子(vinyl polymer),结构如下:其中,当 R = H,为聚乙烯;当 R = CH3,为聚丙烯;当 R = C6H5,为聚苯乙烯;当 R = Cl,则成为聚氯乙烯。高分子材料依照分子量和分子结构的差异,也造成不同物性的塑料。例如甲烷(methane, CH4)为气体,戊烷(pentane, C5H12)为液体,甲烷(polyethylene, C100H102)为固体。高分子材料的分子量通常为10,000 1,00

3、0,000,分子量愈大,愈增加成形的困难度,200,000为合理的成形上限。高分子聚合物的分子链可以视为一重复单体长链,加上主要分子链旁枝的化学基,虽然“塑料”可以泛指聚合物或树脂,塑料一般是指添加了塑化剂、安定剂、填充料或是其它改善性能及成形性之聚合物系统,还包括橡胶、纤维、黏着剂与表面涂料。塑料加工成塑件的制程众多.聚合物分子链的结构、规模大小、化学成分都直接影响聚合物的化学性质与物理性质。塑料高分子还受到机械加工制程与热历程影响。例如,聚合物熔胶的黏滞性(亦即流动阻力)随着分子量增加而增加,随着温度上升而降低。玻璃转移温度、机械性质、耐热性、耐冲击性亦阶随着分子量增加而提高。此外,作用于

4、材料的高剪应力所造成的整齐分子链配向性也会降低聚合物熔胶的黏滞性。就分子量分布而言,短分子链影响拉伸及冲击强度,中分子链影响黏滞性及剪切流动性质,长分子链影响熔胶之弹性。塑料通常具有下列特性: 低强度与低韧性(玻纤强化塑料则可以达到高强度与高韧性) 原料丰富,价格低廉。 有最高使用温度限制。 色彩鲜明,着色容易。 受外力作用时会产生连续变形(潜变现象)。 易加工程复杂形状。(i.e. 容易成形,可以量产。) 低密度。(i.e.重量轻,塑料比重0.92,铝2.7,铁7.8) 耐腐蚀性佳。 良好的绝缘性和隔热性。 可以具有其它特殊性质,例如透明性、可弯曲性等。塑料材料与金属材料比较,金属材料通常包

5、括下列特性;高密度、宽广的使用范围、高热传导性、高导电性、刚性(rigidity)、高强度(strength)、不透明、易生锈、精密加工费用高昂。相对地,塑料材料则具有良好的机械阻尼、良好的热膨胀性、加工周期短而且可以减少穿孔等二次加工的成本、密度低、增加产品设计的空间与选择、料头可以回收以节省成本、可以提高产品寿命、亦可能获得很高的结构强度。钢的模数为210 GPa。一般而言,塑料的模数比金属小数十倍到数百倍。模数的定义E = 应力0应变0,单位是Pa(= N/m2)。塑料材料与金属、陶瓷材料之特性比较如表3-1。表3-1 塑料材料与金属、陶瓷材料之特性比较特性优点缺点低熔点容易加工成形使用

6、温度范围窄高拉伸率Low brittleness高潜变强度和低降伏强度低密度成品轻结构强度低低热传导性隔热性佳散热性差低导电性优良的绝缘体不导电着色容易不必在成品着色颜色比对不易溶剂之敏感性可应用为溶液(solution)可能被溶剂(solvent)影响可燃性废料可以燃烧可能产生烟害(fumes or fire hazards)透光性可以产生透明塑件因阳光照射而劣化将数种聚合物混合,或是将聚合物与其它材料、补强剂复合,可以改变其物理性质、机械性质和材料之成本。这些混合制程造就了下列聚合物系统:(1) 聚合物合金及混合物聚合物合金(polymer alloys)及聚合物混合物(polymer b

7、lends)是将两种或更多种聚合物混合的系统。当混合结果产生融合效应(synergistic effect)而具有单一的玻璃转移温度,称为聚合物合金,其性质比各别的聚合物更佳。当混合结果具有多重的玻璃转移温度,称为聚合物混合物,其性质是各别聚合物的平均。ABS是最早期的一种成功混合物,它结合了各个成分聚合物的耐化学性、韧性(toughness)以及刚性(rigidity)。(2) 聚合物复合材料聚合物复合材料(polymer composites)是将强化物质添加到聚合物内,以增加所需的性质。单晶须晶、黏土、滑石、云母等低长宽比(aspect ratio)之片状填充料可以提高材料的劲度(sti

8、ffness);然而,纤维、玻璃纤维、石墨、硼等高长宽比的填充料可以同时提高拉伸强度和劲度。接下来说说塑料的分类根据分子联结的聚合反应种类,塑料可以区分为热塑性塑料(thermoplastics)和热固性塑料(thermosets)。表3-2列出热塑性塑料与热固性塑料相关的结构与性质之整理。热塑性塑料根据分子结构或链的结构可以再细分为不定形(amorphous)、半结晶(semi-crystalline)或液晶(liquid crystalline)聚合物。其它类别的塑料包括弹性体(elastomers)、共聚合物(copolymers)、复合物(compounds)、商用塑料和工程塑料。添加

9、物填充料和补强剂是直接与塑料性质和性能相关的其它分类方法。表3-2热塑性塑料与热固性塑料的结构与性质微结构线性或分枝分子链,分子间无化学作用。化学反应后,分子链产生交联网状结构。对热的反应可以再软化(属于物理相态变化)。无裂解时,交联后无法再软化。一般性质较高的耐冲击强度。加工较容易。对于复杂设计有较佳的适应性。较好的机械强度。较好的尺寸稳定性。较佳的耐热性及湿气绝缘性。由于热塑性塑料应用较为广泛下面着重说说热塑性塑料.一般而言,热塑性塑料聚合度较高,分子量也较大。线状或分枝状的长分子链有侧链或官能基,而且不与其它聚合物分子相连接,结果,热塑性塑料可以重复地加热而软化,冷却而凝固。这种以物理反

10、应之相变化为主的程序允许将塑料废料回收。虽然热塑性塑料可以回收,但在成形时仍可能有小程度的化学变化,回收塑料的性质可能不会与原始塑料的性质完全相同。 热塑性塑料占所生产塑料的70%,热塑性塑料以小球状或颗粒状贩售,它们在压力下加热熔化成黏稠状流体,冷却时形成所需的成品形状。与热固性塑料比较,热塑性塑料通常具有较高的耐冲击强度,容易加工,对复杂设计有较好的适应性。在热塑性塑料中,商用塑料占了90%,例如高密度聚乙烯(HPPE)、低密度聚乙烯(LDPE)、聚苯乙烯(PS)、聚丙烯(PP)和聚氯乙烯(PVC)等。然而,工程塑料诸如缩醛(acetal)、ABS、耐隆、聚碳酸脂(PC)等提供了高机械强度

11、、较佳的耐热性、较高的冲击强度等改善性能,因此价格也比较昂贵。实用上,经常会提及合金塑料和工程塑料等热塑性塑料的术语。合金塑料指其构造由不同的单体或聚合体之物理混合(而非聚合)。制造合金塑料的理由大都是要适应某种要求之物理性质、有利于价格及性能指数、改进加工之可能性这三种因素,例如PC/ABS和ABS/PVA。而工程塑料是指在机械装置中取代其它金属材料用途之塑料,亦即使用为机械材料的塑料,属于高性能的塑料,一般具有较大的温度使用范围(40300)、高强度与高刚性、耐冲击性、低潜变性、耐磨损、优良的耐化学药品性及绝缘性。热塑性塑料中又可以区分为不定形塑料和结晶性塑料,其结构与性质如表3-3。我厂

12、大量使用的大灯配光镜材料PC,后灯配光镜PMMA属于不定形塑料,而大灯饰圈采用的PBT+PET属于结晶型材料表3-3不定形塑料与结晶性塑料的结构与性质之比较不定形塑料结晶性塑料常用的材料丙烯晴丁二烯苯乙烯共聚合物(ABS)、压克力(例如PMMA、PAN)、聚碳酸脂(PC)、聚苯乙烯(PS)、聚氯乙烯(PVC)、苯乙烯丙烯系聚合物(SAN)。聚缩醛树脂(POM)、耐隆(PA, 聚醯胺)、聚乙烯(PE)、聚丙烯(PP)、热塑性聚脂(例如PBT、PET)。微结构分子在液相和固相都呈现杂乱的配向性。分子在液相呈现杂乱的配向性,在固相则形成紧密堆砌的晶体。热之反应具有软化温度范围,但没有明显的熔点。具有

13、明确的熔点。性质l 透明l 抗化学性差l 成形时体积收缩率低l 通常强度不高l 一般具有高熔胶黏度l 热含量低l 半透明或不透明l 抗化学性佳l 成形时体积收缩率高l 强度高l 熔胶黏度低l 热含量高不定形聚合物的特性: 在无应力作用下加热,不定形塑料熔胶之分子链杂乱地相互纠缠在一起,分子链仅以微弱的凡得瓦尔力维系。不定形塑料维持这种纠缠杂乱的配向性而无视于状态的改变。不定形塑料具有明确的玻璃转移温度和宽广的软化温度范围,没有明确的熔点。当熔胶温度降低,不定形塑料开始呈现橡胶状态,当温度继续降低到玻璃转移温度以下,它将呈现玻璃状态。不定形塑料的透明度高、耐热性中等、耐冲击性好、收缩量低。充填模

14、穴时,不定形塑料的分子链会沿着熔胶流动方向拉伸,分子链与冷模壁接触急冷而冻结;凝固层将塑件内层与模壁隔离,使塑件内层冷却速率较慢,有足够时间将分子链回复卷曲。也就是说,表层的分子链有较好的配向性,较小的收缩量;内层的分子链较无配向性,收缩量较大。所有的不定形塑料的线性收缩率(linear shrinkages)都很接近,所以考量塑件尺寸时,同一塑件可以使用不同的不定形塑料取代,例如以ABS取代苯乙烯,以PC取代压克力,射出成形的尺寸应该会维持在相当精度以内,只是性质会有所变化。(半)结晶性聚合物的特性结晶性材料是不具有大侧基、旁枝或交联的聚合物,熔融的结晶性塑料黏滞性低,容易流动。当冷却到熔点

15、以下时,分子形成规则的晶体结构,使其流动性变差。随着温度继续降低,其结晶度增加,强度也增加,透明度则降低。结晶程序停止于玻璃转移温度。因为在正常的加工程序很难获得100%结晶,结晶性塑料通常呈现半结晶,它同时具有结晶与不定形两种相态,其结晶度则决定于聚合物的化学结构和成形条件。(半)结晶性塑料就像冰块一样具有明确的熔点,玻璃转移温度则不明显,通常低于是温,抗化学性及耐热性佳、润滑性良好、吸湿性低、收缩率高。半结晶性塑料具有相当大的线性收缩率,无法用以取代不定形的塑料的射出成形;否则,会造成尺寸精度上很大的问题。一般塑料中都会有添加剂、填充料与补强料添加剂(additives)、填充料(fill

16、ers)和补强料(reinforcements)是用来改变或改善塑料的物理性质和机械性质,其影响列于表3-5。通常,强化纤维可以提升聚合物的机械性质,而特定的填充料则用来增加模数。一般而言,塑料是不良导体,许多填充料可以影响其电气性质,例如添加导电性填充料可以让塑料产生电磁遮敝性质;添加抗静电剂可以用来吸湿气,降低静电荷的累积;添加耦合剂可以改善塑料与强化纤维之间的键结;有些填充料可以用来降低材料成本;其它的添加剂包括降低燃烧倾向的抗燃剂、降低熔胶黏度的润滑剂、增加材料柔软性的塑化剂、和提供耐颜色的着色剂。填充料可以改善塑料的性质和成形性。假如添加低值长宽比的填充料,其底材的性质改变较小,此类

17、填充料的好处如下: 降低收缩量。 改善耐热性。 改善强度,特别是压缩强度。 降低耐冲击性。 改善耐溶剂性。表 3-4 常用树脂的建议熔胶温度与模具温度材料名称流动性质熔胶温度(°C°F)模具温度(°C°F)顶出温度(°C°F)MFR g/10min测试负荷 kg测试温度C最小值建议值最大值最小值建议值最大值建议值ABS 3510220200/392230/446280/53625/7750/12280/17688/190PA 12 955275230/446255/491300/57230/8680/176110/230135/275

18、PA 6 1105275230/446255/491300/57270/15885/185110/230133/271PA 66 1005275260/500280/536320/60870/15880/176110/230158/316PBT 352.16250220/428250/482280/53615/6060/14080/176125/257PC 201.2300260/500305/581340/64470/15895/203120/248127/261PC/ABS125240230/446265/509300/57250/12275/167100/212117/243PC/PBT

19、 465275250/482265/509280/53640/10460/14085/185125/257PE-HD 152.16190180/356220/428280/53620/6840/10495/203100/212PE-LD 102.16190180/356220/428280/53620/6840/10470/15880/176PEI 155.00340340/644400/752440/82470/158140/284175/347191/376PET 275290265/509270/518290/554 80/176100/212120/248150/302PETG 235

20、260220/428255/491290/55410/5015/6030/8659/137PMMA 103.8230240/464250/482280/53635/9060/14080/17685/185POM 202.16190180/356225/437235/45550/12270/158105/221118/244PP 202.16230200/392230/446280/53620/6850/12280/17693/199PPE/PPO 4010265240/464280/536320/60860/14080/176110/230128/262PS 155200180/356230/

21、446280/53620/6850/12270/15880/176PVC 5010200160/320190/374220/42820/6840/10470/15875/167SAN 3010220200/392230/446270/51840/10460/14080/17685/185高值长宽比的填充料(例如25以上)可以称为纤维(fiber)。纤维补强料可以相当程度地影响塑料性质。假设聚合物与纤维之间具有良好的结合力,则沿着纤维方向的强度会大幅提升。假如多数纤维有相同的配向性,则沿着纤维配向性与垂直于纤维配向的弹性模数会有很大差异,在垂直方向的模数会与无添加纤维的塑料之模数接近。添加的纤维

22、也相当程度地影响材料的收缩性质,在纤维配向方向的收缩率会比剖面方向的收缩率低许多。因为纤维的配向性随着流动方向、肉厚方向、缝合线位置而变化,为了预测塑件的性质,预测这些配向性就愈显重要表3-5添加剂、填充料与补强料对于聚合物性质的影响添加剂、填充料及补强料常用村料对聚合物性质的影响强化纤维碳素、碳、矿物质纤维、玻璃、kevlarl 增加拉伸强度l 增加弯曲模数(flexural modulus)l 提高热变形温度l 提升抗收缩与抗翘曲能力导电性填充料铝粉、碳纤维、石墨l 提高电气性质l 提高热传导性耦合剂Silanes、titanatesl 改善聚合物与纤维界面之键结力抗燃剂氯、溴、硫、金属盐

23、l 降低燃烧发生率及扩散速度混合填充料碳酸钙、硅、黏土l 降低材料成本塑化剂单体液体、低分子量材料l 改善熔胶的流动性l 加强挠曲性着色剂(色料或染料)金属氧化物、铬酸盐、碳黑l 提供耐久的颜色l 防止热裂解或紫外线造成裂解发泡剂气体、氮复合物、联氨衍生物l 造成孔穴组织以降低材料密度接下来说说塑料如何流动熔融的热塑性塑料呈现黏弹性行为(viscoelastic behavior),亦即黏性流体与弹性固体的流动特性组合。当黏性流体流动时,部分驱动能量将会转变成黏滞热而消失;然而,弹性固体变形时,会将推动变形的能量储存起来。日常生活中,水的流动就是典型的黏性流体,橡胶的变形属于弹性体。除了这两种

24、的材料流动行为,还有剪切和拉伸两种流动变形,如图4-1 (a)与(b)。在射出成形的充填阶段,热塑性塑料之熔胶的流动以剪切流动为主,如图4-1(c)所示,材料的每一层元素之间具有相对滑动。另外,当熔胶流经一个尺寸突然变化的区域,如图4-1(d),拉伸流动就变得重要多了。图4-1 (a)剪切流动;(b)拉伸流动;(c)模穴内的剪切流动(d)充填模穴内的拉伸流动热塑性塑料承受应力时会结合理想黏性流体和理想弹性固体之特性,呈现黏弹性行为。在特定的条件下,熔胶像液体一样受剪应力作用而连续变形;然而,一旦应力解除,熔胶会像弹性固体一样恢复原形,如图4-2 (b)与 (c)所示。此黏弹性行为是因为聚合物在

25、熔融状态,分子量呈现杂乱卷曲型态,当受到外力作用时,将允许分子链移动或滑动。然而,相互纠缠的聚合物分子链使系统于施加外力或解除外力时表现出弹性固体般的行为。譬如说,在解除应力后,分子链会承受一恢复应力,使分子链回到杂乱卷曲的平衡状态。因为聚合物系统内仍有分子链的交缠,此恢复应力可能不是立即发生作用。图4-2 (a)理想的黏性液体在应力作用下表现出连续的变形;(b)理想的弹性固体承受外力会立刻变形,于外力解除后完全恢复原形;(c)热塑性塑料之熔胶就像液体一样,在剪切应力作用下而连续变形。然而,一旦应力解除,它就像弹性固体一般,部分变形会恢复原形。熔胶剪切黏度是塑料流动非常重要的指标熔胶剪切黏度(

26、shear viscosity)是塑料抵抗剪切流动的阻力,它是剪切应力与剪变率的比值,参阅图4-3。聚合物熔胶因长分子链接构而具有高黏度,通常的黏度范围介于23000 Pa(水为 10-1 Pa,玻璃为1020 Pa)。图4-3 以简易之剪切流动说明聚合物熔胶黏度的定义水是典型的牛顿流体,牛顿流体的黏度与温度有关系,而与剪变率无关。但是,大多数聚合物熔胶属于非牛顿流体,其黏度不仅与温度有关,也与剪切应变率有关。聚合物变形时,部份分子不再纠缠,分子链之间可以相互滑动,而且沿著作用力方向配向,结果,使得聚合物的流动阻力随着变形而降低,此称为剪变致稀行为(shearing-thinning beha

27、vior),它表示聚合物承受高剪变率时黏度会降低,也提供了聚合物熔胶加工便利性。例如,以两倍压力推动开放管线内的水,水的流动速率也倍增。但是,以两倍压力推动开放管线内的聚合物熔胶,其流动速率可能根据使用材料而增加215倍。介绍了剪切黏度的观念,再来看看射出成形时模穴内的剪变率分布。一般而言,材料的连接层之间的相对移动愈快,剪变率也愈高,所以,典型的熔胶流动速度曲线如图4-4(a),其在熔胶与模具的界面处具有最高的剪变率;或者,假如有聚合物凝固层,在固体与液体界面处具有最高的剪变率。另一方面,在塑件中心层因为对称性流动,使得材料之间的相对移动趋近于零,剪变率也接近零,如图4-4(b)所示。剪变率

28、是一项重要的流动参数,因为它会影响熔胶黏度和剪切热(黏滞热)的大小。射出成形制程的典型熔胶剪变范围在102 105 1/s之间。图4-4 (a)相对流动元素间运动之典型速度分布曲线; ( b)射出成形之充填阶段的剪变率分布图。聚合物分子链的运动能力随着温度升高而提高,如图4-5所示,随着剪变率升高与温度升高,熔胶黏度会降低,而分子链运动能力的提升会促进较规则的分子链排列及降低分子链相互纠缠程度。此外,熔胶黏度也与压力相关,压力愈大,熔胶愈黏。材料的流变性质将剪切黏度表示为剪变率、温度与压力的函数。图4-5 聚合物黏度与剪变率、温度、及压力的关系接下来说说熔胶流动之驱动-射出压力射出机的射出压力

29、是克服熔胶流动阻力的驱动力。射出压力推动熔胶进入模穴以进行充填和保压,熔胶从高压区流向低压区,就如同水从高处往低处流动。在射出阶段,于喷嘴蓄积高压力以克服聚合物熔胶的流动阻力,压力沿着流动长度向聚合物熔胶波前逐渐降低。假如模穴有良好的排气,则最终会在熔胶波前处达到大气压力。压力分布如图4-6所示。图4-6 压力沿着熔胶输送系统和模穴而降低模穴入口的压力愈高,导致愈高的压力梯度(单位流动长度之压力降)。熔胶流动长度加长,就必须提高入口压力以产生相同的压力梯度,以维持聚合物熔胶速度,如图4-7所示。图4-7熔胶速度与压力梯度的关系根据古典流体力学的简化理论,充填熔胶输送系统(竖浇道、流道和浇口)和

30、模穴所需的射出压力与使用材料、设计、制程参数等有关系。图4-8显示射出压力与各参数的函数关系。使用P表示射出压力,n 表示材料常数,大多数聚合物的n值介于0.150.36 之间,0.3是一个适当的近似值,则熔胶流动在竖浇道、流道和圆柱形浇口等圆形管道内所需的射出压力为:熔胶流动在薄壳模穴之带状管道内所需的射出压力为:熔胶的流动速度与流动指数(Melt Index, MI) 有关,流动指数也称为流导flow conductance),流动指数是熔胶流动难易的指标。实际上,流动指数是塑件几何形状(例如壁厚,表面特征)及熔胶黏度的函数。流动指数随着肉厚增加而降低,但是随着熔胶黏度增加而降低,参阅图4

31、-9。射出成形时,在特定的成形条件及塑件肉厚下,熔胶可以流动的长度将根据材料的热卡性质与剪切性质而决定,此性质可以表示为熔胶流动长度,如图4-10所示。图4-8 射出压力与使用材料知黏滞性、流动长度、容积流率和肉厚的函数关系图4-9流动指数相对于壁厚与黏度关系图4-10熔胶流动长度决定于塑件厚度和温度将射出成形充填模穴的射出压力相对于充填时间画图,通常可以获得U形曲线,如图4-11,其最低射出压力发生在曲线的中段时间。要采用更短的充填时间,则需要高熔胶速度和高射出压力来充填模穴。要采用较长的充填时间,可以提供塑料较长的冷却时间,导致熔胶黏度提高,也需要较高的射出压力来充填模穴。射出压力相对于充

32、填时间的曲线形状与所使用材料、模穴几何形状和模具设计有很大的关系。图4-11射出压力相对于充填时间之U形曲线最后必须指出,因为熔胶速度(或剪变率)、熔胶黏度与熔胶温度之间交互作用,有时候使得充填模穴的动力学变得非常复杂。注意,熔胶黏度随着剪变率上升及温度上升而降低。高熔胶速度造成的高剪变率及高剪切热可能会使黏度降低,结果使流动速度更加快,更提高了剪变率和熔胶温度。所以对于剪变效应很敏感的材料本质上具有不稳定性。充填模式(Filling Pattern)是熔胶在输送系统与模穴内,随着时间而变化的流动情形,如图4-13所示。充填模式对于塑件品质有决定性的影响,理想的充填模式是在整个制程中,熔胶以一

33、固定熔胶波前速度(melt front velocity, MFV)同时到达模穴内的每一角落;否则,模穴内先填饱的区域会因过度充填而溢料。以变化之熔胶波前速度充填模穴,将导致分子链或纤维配向性的改变。图4-13 计算机仿真之熔胶充填模式的影像熔胶波前的前进速度简称为MFV,推进熔胶波前的剖面面积简称为 MFA,MFA可以取熔胶波前横向长度乘上塑件肉厚而得到,或是取流道剖面面积,或者视情况需要而取两者之和。在任何时间,容积流动率 = 熔胶波前速度(MFV) × 熔胶波前面积(MFA)对于形状复杂的塑件,使用固定的螺杆速率并不能保证有固定的熔胶波前速度。当模穴剖面面积发生变化,纵使射出机

34、维持了固定的射出速度,变化之熔胶波前速度仍可能先填饱模穴的部份区域。图 4-14 显示在镶埋件(insert)周围熔胶波前速度增加,使镶埋件两侧产生高压力和高配向性,造成塑件潜在的不均匀收缩和翘曲。图4-14 熔胶波前速度(MFV)和熔胶波前面积(MFA)。MFV之差异会使得塑料分子(以点表示)以不同方式伸展,导致分子与纤维配向性的差异,造成收缩量差异或翘曲。在射出成形的充填阶段,塑料材料的分子链或是填充料会依照剪应力之作用而发生配向。由于模温通常比较低,在表面附近的配向性几乎瞬间即凝固。分子链和纤维的配向性取决于熔胶之流体动力学和纤维伸展的方向性。在熔胶波前处,由于剪切流动和拉伸流动的组合,不断强迫熔胶从肉厚中心层流向模壁,造成喷泉流效应(fountain flow effect),此效应对塑件表层的分子链纤维配向性的影响甚巨。请参阅图4-15之说明。图4-15 塑件表层与中心层之纤维配向性塑件成形之MFV愈高,其表面压力愈高,分子链配向性的程度也愈高。充填时的MFV差异会使得塑件内的配向性差异,导致收缩不同而翘曲,所以充填时应尽量维持固定的MFV,使整个塑件有均匀的分子链配向性。MFV和MFA是流动平衡的重要设计参数。不平衡

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论