人教版高中数学必修第二册课堂练习课件6.2.2《向量的减法运算》(含答案)_第1页
人教版高中数学必修第二册课堂练习课件6.2.2《向量的减法运算》(含答案)_第2页
人教版高中数学必修第二册课堂练习课件6.2.2《向量的减法运算》(含答案)_第3页
人教版高中数学必修第二册课堂练习课件6.2.2《向量的减法运算》(含答案)_第4页
人教版高中数学必修第二册课堂练习课件6.2.2《向量的减法运算》(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-1-6.2.2向量的减法运算课前篇自主预习一二一、相反向量1.思考(1)什么是相反数?提示绝对值相等,符号相反的两个数互为相反数.(2)如果两个向量方向相同或相反,这两个向量有什么关系?提示这两个向量是共线(平行)向量.(3)方向相同,模相等的两个向量有什么关系?提示两个向量相等.2.填空课前篇自主预习一二3.做一做(1)如图,ABCD 是平行四边形,AC与BD相交于点O,下列互为相反向量的是()答案:C课前篇自主预习一二(2)判断下列说法是否正确,正确的在后面的括号内打“”,错误的打“”.方向相反的向量就是相反向量.()互为相反向量的两个向量一定是共线向量.()互为相反向量的两个向量的模一

2、定相等.()答案:课前篇自主预习一二二、向量减法运算及其几何意义1.思考(1)请类比实数减法的意义,探索向量减法的意义.提示我们知道,减去一个数等于加上这个数的相反数.类比得出:减去一个向量等于加上这个向量的相反向量.(2)你能用向量加法的平行四边形法则求两个向量的差吗?课前篇自主预习一二(3)根据上面(2)中的作法怎样更简便地作出两个向量的差呢? 课前篇自主预习一二(4)当两个非零向量a,b共线时,如何作图得a-b? 课前篇自主预习一二2.填空 课前篇自主预习一二3.做一做如图,在正方形ABCD中,对角线相交于点O,则有: 课堂篇探究学习探究一探究二探究三思维辨析随堂演练向量的减法运算向量的

3、减法运算例例1化简下列各向量的表达式:分析按照向量加法和减法的运算法则进行化简,进行减法运算时,必须保证两个向量的起点相同.课堂篇探究学习探究一探究二探究三思维辨析随堂演练反思感悟反思感悟 向量加减法化简的两种形式(1)首尾相连且为和;(2)起点相同且为差.做题时要注意观察是否有这两种形式,同时要注意逆向应用.课堂篇探究学习探究一探究二探究三思维辨析随堂演练变式训练变式训练1化简下列向量表达式: 课堂篇探究学习探究一探究二探究三思维辨析随堂演练向量减法运算的几何意义向量减法运算的几何意义(2)当向量a,b满足什么条件时,四边形ABCD是矩形?(3)当向量a,b满足什么条件时,四边形ABCD是菱

4、形?分析结合向量加法、减法运算的平行四边形法则和三角形法则进行分析求解.课堂篇探究学习探究一探究二探究三思维辨析随堂演练反思感悟反思感悟 要熟练掌握在三角形、平行四边形等常见图形中,各边对应向量以及对角线对应向量之间的关系,能够运用向量的加法与减法进行正确的表示,同时还要熟悉常见平面图形的几何性质,能够从向量的角度,运用向量语言进行表示.课堂篇探究学习探究一探究二探究三思维辨析随堂演练延伸探究延伸探究结合本例图形分析,若a,b都是非零向量,则a+b与a-b有可能是相等向量吗?解:(1)当a,b不是共线向量时,由本例图形可知,a+b与a-b是平行四边形的两条对角线对应的向量,二者不可能相等;(2

5、)当a,b是共线向量时,同样可以按照平行四边形法则或三角形法则,作出a+b,a-b,发现它们不可能相等.综上,若a,b都是非零向量,则a+b与a-b不可能是相等向量.课堂篇探究学习探究一探究二探究三思维辨析随堂演练向量的和与差的模向量的和与差的模例例3已知|a|=|b|=1,|a+b|=1,则|a-b|= ()分析根据向量的平行四边形法则,表示出向量a+b和a-b,再根据向量模的关系判断平行四边形的形状求解.答案:B课堂篇探究学习探究一探究二探究三思维辨析随堂演练解析:如图,根据向量加法的平行四边形法则可知,当|a|=|b|=1时,平行四边形ABDC为菱形.课堂篇探究学习探究一探究二探究三思维

6、辨析随堂演练反思感悟反思感悟 解决向量模的问题的两种方法(1)依据图形特点,适当运用三角形法则和平行四边形法则进行转化,要注意相关知识间的联系;(2)利用向量形式的三角不等式:即|a|-|b|ab|a|+|b|求解,用此法求解时,一定要注意等号成立的条件.课堂篇探究学习探究一探究二探究三思维辨析随堂演练答案:10,5 课堂篇探究学习探究一探究二探究三思维辨析随堂演练利用向量证明几何问题 课堂篇探究学习探究一探究二探究三思维辨析随堂演练方法技巧方法技巧 1.用向量法解决平面几何问题的步骤(1)将平面几何问题中的量抽象成向量.(2)化归为向量问题,进行向量运算.(3)将向量问题还原为平面几何问题.2.用向量法证明四边形为平行四边形的方法和解题关键(1)利用向量证明线段平行且相等从而证明四边形为平行四边形,只需证明对应有向线段所表示的向量相等即可.(2)根据图形灵活应用向量的运算法则,找到向量之间的关系是解决此类问题的关键.课堂篇探究学习探究一探究二探究三思维辨析随堂演练1.若非零向量a,b互为相反向量,则下列说法错误的是 ()A.ab B.ab C.|a|b|D.b=-a答案:C解析:根据相反向量的定义:大小相等,方向相反,可知|a|=|b|.A.a+b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论