



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品资料数列创新题的基本类型及求解策略高考创新题,向来是高考试题中最为亮丽的风景线这类问题着重考查观察发现,类比转化以及运用数学知识,分析和解决数学问题的能力当然数列创新题是高考创新题重点考查的一种类型下举例谈谈数列创新题的基本类型及求解策略一、创新定义型例 1 已知数列 an 满足 anlog n 1 (n2) ( n N),定义使 a1a2a3 Lak 为整数的数叫做企盼数,则区间1, 2005 内所有的企盼数的和M_解: anlog n 1(n2) ( nN ), a1a2 a3 .aklog 2 3log 3 4Llog k1 (k 2)log2 (k2)要使 log 2 ( k2)
2、为正整数,可设k( n)22n 1 ,即 k(n) 2n 12 ( nN )令1 2n 12 20051 n 9 ( nN )则区间 1, 2005 内所有企盼数的和99(2 n 1(2 2(232) (24(210Mk(n)2)2)2) .2)n 1n 1(2 22324. 210 )2922 (291) 182056 ,21 M2056 评析:准确理解企盼数的定义是求解关键解题时应将阅读信息与所学知识结合起来,侧重考查信息加工能力二、性质探求型nn1,2,3,4,5,6例 2 已知数列 an 满足 anan 3,则 a2005 _n 7解:由 anan 3 , n 7 知, an6an 3
3、an 从而当 n 6 时,有 an an 6 ,于是知 a2005a334 6 1a1 1 评析:本题主要通过对数列形式的挖掘得出数列特有的性质,从而达到化归转化解决问题的目的其中性质探求是关键三、知识关联型可编辑修改精品资料例 3 设是椭圆x2y21 的右焦点,且椭圆上至少有21 个不同的点 Pi (i 1, 2, 3,L ) ,76使 PF1, PF2 ,PF3, L组成公差为的等差数列,则的取值范围为_PF解析:由椭圆第二定义知iePFie PPii ,这些线段长度的最小值为右焦点到右PPi i顶点的距离即FP171 ,最大值为右焦点到左顶点的距离即PF217 1 ,故若公差d 0 ,则
4、7171 ( n1)d , n21 21, 0d 1 同理,若公差 d0 ,d10则可求得1 d0 10评析:本题很好地将数列与椭圆的有关性质结合在一起,形式新颖,内容深遂,有一定的难度,可见命题设计者的良苦用心解决的关键是确定该数列的最大项、最小项,然后根据数列的通项公求出公差的取值范围四、类比联想型a1a2a3 Lan(n N ) 也是等差例 4 若数列 an ( n N ) 是等差数列, 则有数列 bnn数列;类比上述性质,相应地:若数列 cn 是等比数列,且cn0 ,则有数列 dn_也是等比数列解析:由已知“等差数列前 n 项的算术平均值是等差数列”可类比联想“等比数列前n 项的几何平
5、均值也应该是等比数列”不难得到dnn c1 c2c3 L cn 也是等比数列评析:本题只须由已知条件的特征从形式和结构上对比猜想不难挖掘问题的突破口五、规律发现型例 5 将自然数 1, 2, 3, 4, L 排成数陈(如右图) ,在处转第一个弯,在转第二个弯,在转第三个弯, ,则第 2005 个转弯处的数为 _可编辑修改精品资料21 22 23 24 25 26|207 891027|1961 211|1854312|17 16 15 14 13解:观察由起每一个转弯时递增的数字可发现为“1, 1, 2, 2, 3, 3, 4, 4, L ”故在第2005 个转弯处的数为:12(1 2 3 L
6、 1002)1003 1006010 评析:本题求解的关键是对图表转弯处数字特征规律的发现具体解题时需要较强的观察能力及快速探求规律的能力因此,它在高考中具有较强的选拔功能六、图表信息型例 6 下表给出一个“等差数阵”:()() ()a1j() () () a2 j() () () () () a3 j() () ()() ()a4 jai1ai 2ai 3ai 4ai 5aij其中每行、每列都是等差数列,aij 表示位于第行第j 列的数写出 a45 的值;写出 aij 的计算公式;证明:正整数在该等差数列阵中的充要条件是2N1可以分解成两个不是的正整数之积解: a4549 (详见第二问一般性
7、结论)该等差数阵的第一行是首项为,公差为的等差数列:a1 j43( j1);第二行是首项为,公差为的等差数列:a2 j75( j1),可编辑修改精品资料第行是首项为43(i1) ,公差为 2i1的等差数列,因此 aij43(i1)(2i1)( j1)2ijiji (2 j1)j ;必要性:若在该等差数阵中,则存在正整数i , j 使得 Ni (2 j1)j ,从而 2 N12i (2 j1)2 j1(2i1)(2 j1) 即正整数 2N1可以分解成两个不是的正整数之积充分性:若2N1 可以分解成两个不是的正整数之积,由于2 N1 是奇数,则它必为两个不是的奇数之积,即存在正整数k ,l ,使得
8、 2N1(2k1)(2l1) ,从而 Nk (2l1)lakl可见在该等差数阵中综上所述,正整数在该等差数阵中的充要条件是2N1可以分解成两个不是的正整数之积评析:本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力求解关键是如何根据图表信息求出行列式中对应项的通项公式七、“杨辉三角”型例 7 如图是一个类似“杨辉三角”的图形,第行共有个数,且该行的第一个数和最后一个数都是,中间任意一个数都等于第n 1行与之相邻的两个数的和,an,1 , an,2 , .an,n (n1, 2, 3, L ) 分别表示第行的第一个数,第二个数,第个数求 an ,2 (n 2
9、且 nN ) 的通项式122343477451114115.解:由图易知a2,22, a3,24,a4,2 7,a5,211, L 从而知 an,2 是一阶等差数列,即a3,2a2,22.(1)a4,2a3,23.(2)a5,2a4,24.(3).an ,2a( n1),2n 1.(n1)以上 n 1 个式相加即可得到:an ,2a2,223 4 .(n(n1)(n2)(n 1)(n 2)1)2an ,222可编辑修改精品资料2nn2即 an ,2(n 2 且 nN )2评析:“杨辉三角”型数列创新题是近年高考创新题的热点问题求解这类题目的关键是仔细观察各行项与行列式的对应关系,通常需转化成一阶 (或二阶)等差数列结合求和方法来求解有兴趣的同学不妨求出aij (i , jN 且 i j ) 的通项式八、阅读理解型例 8 电子计算机中使用二进制,它与十进制的换算关系如下表:十进制二进制100101110观察二进制位数,位数,位数时,对应的十进制的数,当二进制为位数能表示十进制中最大的数是解:通过阅读,不难发现:1120,2020121,3120121,4020021122,5120021122,进而知 7120121122,写成二进制为111于是知二进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阿勒泰地区2024-2025学年八年级下学期语文期中模拟试卷
- 2025 年小升初厦门市初一新生分班考试英语试卷(带答案解析)-(人教版)
- 早产儿脑室内出血预防专家共识(2025)解读课件
- 湖北省2025年上半年房地产经纪人《经纪实务》:房地产市场细分原则模拟试题
- 黑龙江省哈尔滨市第六十九中学校2024-2025学年七年级上学期开学测试数学试题(含部分答案)
- 2025-2026学年苏科版八年级数学上册第一次月考测试卷(含答案)
- 祖庙租房合同范本
- 劳动合同范本装订
- 公证遗产赠予合同范本
- 网签商铺合同范本
- 2023年生态环境综合行政执法考试参考题库(400题)
- 乡村全科执业助理医师考试试题
- 医疗器械不良事件培训讲稿
- 陕西省公路工程通用表格
- GB/T 12247-2015蒸汽疏水阀分类
- 义务教育历史新课程标准测试卷试题三(2022版)含答案
- 交通学院校史馆布展文稿
- 期权风险管理课件
- 考研管理类联考初数真题有答案
- 《护理伦理学》教学大纲(本科)
- 建筑幕墙节能工程施工方案
评论
0/150
提交评论