




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品文档多边形内角和第一部分知识点回顾f定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。凸多边形凹多边形精品文档多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。非正多边形:1、n边形的内角和等于180 °(n-2)。多边形的定理.2、任意凸形多边形的外角和等于360°I 3、n边形的对角线条数等于1/2 n ( n-3)只用一种正多边形:3、4、6/。''镶嵌2I拼成360度的角 只用一种非正多边形(全等):3、4o JV知识点一:多边形及有关概念1、多边形的定义:在同一平面内。多边形的分类:不叫三边形2、 镶嵌:用一些不重叠摆
2、放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。这里的多边形可以形状相同,也可以形状不相同。实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°相邻的多边形有公共边。3、常见的一些正多边形的镶嵌问题:(1) 用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360 ° o(2) 只用一种正多边形镶嵌地面:只有正三角形、正方形、正六边形的地砖可以用。注意:任意四边形的内角和都等于360 °。所以用一批形状、 大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。
3、(3) 用两种或两种以上的正多边形镶嵌地面用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周 角”的问题。例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可 以作平面镶嵌,见下图:又如,用一个正三角形、两个正方形、一个正六边形结合在一起恰好能够铺满地面,因为它们的交接处各角之和恰好为一个周角360 ° o规律方法指导1 内角和与边数成正比:边数增加,内角和增加; 边数减少,内角和减少每增加一条边,内角的和 就增加180°(反过来也成立),且多边形的内 角和必须是180。的整数倍2. 多边
4、形外角和恒等于 360 °,与边数的多少无关3. 多边形最多有三个内角为锐角,最少没有锐角 (如矩形);多边形的外角中最多有三个钝角,最少没有钝角4. 在运用多边形的内角和公式与外角的性质求值 时,常与方程思想相结合,运用方程思想是解决本节问题的常用方法5. 在解决多边形的内角和问题时,通常转化为与 三角形相关的角来解决三角形是一种基本图形,是研究复杂图形的基础,同时注意转化思想在数 学中的应用只要设出边ED第二部分经典习题类型一:多边形内角和及外角和定理应用1. 一个多边形的内角和等于它的外角和的5倍,它是几边形?总结升华:本题是多边形的内角和定理和外角和定理的综合运用精品文档数1
5、,根据条件列出关于 卜的方程,求出卜的值即可,这是 举一反三:【变式1】若一个多边形的内角和与外角和的总度数为【变式2】一个多边形除了一个内角外,其余各内角和为【答案】设这个多边形的边数为、,这个内角为】',种常用的解题思路1800°,求这个多边形的边数2750 °,求这个多边形的内角和是多少?【变式3】个多边形的内角和与某一个外角的度数总和为 边形的边数。1350°,求这个多醐类型二:多边形对角线公式的运用2.某校七年级六班举行篮球比赛,比赛采用单循环积分制次比赛)你能算出一共需要进行多少场比赛吗?思路点拨:本题体现与体育学科的综合,解题方法参照多边形对
6、角线条数的求法,即多边形的对角线条数加上边 数如图:(即每两个班都进行总结升华:对于其他学科问题要善于把它与数学知识联系在一起,便于解决举一反三:【变式1】一个多边形共有 20条对角线,则多边形的边数是()A . 6B . 7C . 8D . 9【变式2】一个十二边形有几条对角线。鬥(评-3)总结升华:对于一个n边形的对角线的条数,我们可以总结出规律二 条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢。类型三:可转化为多边形内角和问题3.如图,求/ A + Z B + Z C + Z D + Z E + Z F 的度数思路点拨:设法
7、将这几个角转移到一个多边形中,然后利用多边形内角和公式求解总结升华:本题通过作辅助线, 把/A与/ G的和转化为/ 1与/ 2的和,从而把问题变为求五边形的内角和运算, “转化思想”是解决本题的关键 举一反三:【变式1】如图所示,/1 + Z 2+ / 3+Z 4+ / 5+ / 6=类型四:实际应用题4. 如图,一辆小汽车从 P市出发,先到 B市,再到C市, 市,这辆小汽车共转了多少度角?思路点拨:根据多边形的外角和定理解决解析:如图,总结升华:旋转的角度是指原来前进的方向与转弯后的方 向的夹角小汽车沿任意多边形行驶一周回到原处,转过的角 度都是360举一反三:【变式1】如图所示,小亮从 A
8、点出发前进10m,向右转15°,再前进10m,又向右转15°,,这样一直走下 去,当他第一次回到出发点时,一共走了 m.【变式2】小华从点A出发向前走10米,向右转36°,然后继续向前走 10米,再向右转36°,他以同样的 方法继续走下去,他能回到点A吗?若能,当他走回点 A时共走了多少米?若不能,写出理由。【变式3】如图所示是某厂生产的一块模板,已知该模板的边AB / CF, CD / AE.按规定AB、CD的延长线相交成80°角,因交点不在模板上,不便测量 这时师傅告诉徒弟只需测一个角,便知道 AB、CD的延长线的夹角是 否合乎规定,你知道
9、需测哪一个角吗?说明理由540°,又由 AB / CF, CD / AE ,C的度数为100。,所以只需测/ C的思路点拨:本题中将AB、CD延长后会得到一个五边形,根据五边形内角和为 可知/ BAE+ / AEF+ / EFC=360。,从540°中减去80°再减去360 °,剩下/度数即可,同理还可直接测/A的度数.总结升华:本题实际上是多边形内角和的逆运算,关键在于正确添加辅助线思路点拨:只要在拼接处各多边形的内角的和能构成一个周角,那么这些多边形就能作平面镶嵌。类型五:镶嵌问题5分别画出用相同边长的下列正多边形组合铺满地面的设计图。(1)正方形和
10、正八边形;(2)正三角形和正十二边形;(3)正三角形、正方形和正六边形。解析:正三角形、正方形、正六边形、正八边形、正十二边形的每一个内角分别是60°、 90°、120°、 135150°。(1)因为90+ 2 X 135= 360,所以一个顶点处有 1个正方形、2个正八边形,如图 所示。(2)因为60+ 2 X 150= 360,所以一个顶点处有 1个正三角形、2个正十二边形,如图(2)所示。(3) 因为60+ 2 X 90+ 120 = 360,所以一个顶点处有 1个正三角形、1个正六边形和2个正方形,如图 所示。总结升华:用两种以上边长相等的正多边
11、形组合成平面图形,实质上是相关正多边形“交接处各角之和能否拼成 一个周角”的问题。举一反三:【变式1】分别用形状、大小完全相同的三角形木板;四边形木板;正五边形木 板;正六边形木板作平面镶嵌,其中不能镶嵌成地板的是()A、B、C、D、解析:用同一种多边形木板铺地面, 只有 正三角形、四边形、正六边形的木板可以用, 不能用正五边形木板,故【变式2】用三块正多边形的木板铺地, 拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是 ()A、4B、5C、6D、8【答案】A(提示:先算出正八边形一个内角的度数,再乘以2,然后用360。减去刚才得到的积,便得到第三块木板一个
12、内角的度数,进而得到第三块木板的边数)7.3多边形及其内角和(请在50分钟内完成,按考试要求自己 )一、选择题:(每小题3分,共24分)1. 一个多边形的外角中,钝角的个数不可能是()A.1 个B.2个C.3个D.4个2. 不能作为正多边形的内角的度数的是()A.120 B.(108)° C.144 D.145 °3. 若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1B.1:1C.5:2D.5:44. 一个多边形的内角中,锐角的个数最多有()A.3 个B.4个C.5 个D.6 个5. 四边形中,如果有一组对角都是直角,那么另一组对角可能()A
13、.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角6. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形 C.十一边形 D.十边形精品文档7. 若一个多边形共有十四条对角线,则它是()A.六边形 B. 七边形 C.八边形 D.九边形8. 若一个多边形除了一个内角外,其余各内角之和为2570 ° ,则这个内角的度数为()A.90°B.105C.130 °D.120°二、填空题:(每小题3分,共15分)1. 多边形的内角中,最多有个直角2. 从n边形的一个顶点出发,最多可以引 条对角线,这些对角线
14、可以将这个多边形分成 个三角形.3. 如果一个多边形的每一个内角都相等4. 已知一个多边形的每一个外角都相等,且每一个内角都大于135° ,那么这个多边形的边数最少为 .,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为 5.每个内角都为144。的多边形为 边形三、基础训练:(每小题12分,共24分)1.如图所示,用火柴杆摆出一系列 三角形图案,按这种方式摆下去 当摆到20层(n=20)时,需要多少 根火柴?n=12. 一个多边形的每一个外角都等于24° ,求这个多边形的边数四、提高训练:(共15分)一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.五、探索发现:(共18分)从n边形的一个顶点出发,最多可以引
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水泥搅拌桩施工技术培训大纲
- 台灯简笔画课件
- 展柜设计培训课件
- 课件最佳路径
- 广东国际贸易自考试题及答案
- 课件显示屏教学课件
- 广东工程估价自考试题及答案
- 拉架工考试题及答案
- 快递考试题及答案大全
- 课程方案考试题及答案
- 2025年全国“质量月”企业员工全面质量管理知识答题(含答案)
- 上海小学数学教材目录(沪教版)
- 营养性维生素缺乏性佝偻病
- GB/T 13576.4-1992锯齿形(3°、30°)螺纹公差
- GA 668-2006警用防暴车通用技术条件
- 《C语言程序设计》一等奖说课稿
- 油画综合材料与技法
- 血浆置换 (1)课件
- 保洁常用工具和设备一览表
- 测量教案5章-es-602g全站仪
- FJC系列浮选机说明书(最终版)2010100712
评论
0/150
提交评论