



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、辽宁省凌源市2018 届高三数学三校联考试题文第卷(共 60分)一、选择题:本大题共12 个小题 , 每小题5 分 , 共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则集合中元素的个数为()A 4B 3C 2D 12已知命题,则命题为()ABCD3已知复数( 为虚数单位),则复数在复平面内对应的点位于()A第四象限B第三象限C第二象限D第一象限4已知双曲线的一个焦点为,则双曲线的渐近线方程为()ABCD5 2017 年 8 月 1 日是中国人民解放军建军90 周年,中国人民银行为此发行了以此为主题的金银纪念币 . 如图所示是一枚8 克圆形金质纪念币,直径22 毫米,
2、面额100 元 . 为了测算图中军旗部分的面积,现向硬币内随机投掷100 粒芝麻,已知恰有30 粒芝麻落在军旗内,据此可估计军旗的面积大约是()ABCD-1-/126下列函数中,与函数的定义域、单调性与奇偶性均一致的函数是()ABCD7如图是一个空间几何体的正视图和俯视图,则它的侧视图为()ABCD8设,则的大小关系为()ABCD9执行如图所示的程序框图,则输出的值为()ABCD10将函数的图象向平移个单位,再把所有点的横坐标伸长到原来的 2 倍,得到函数的图象,则下列关于函数的说法错误的是()A最小正周期为B初相为C图象关于直线对称D图象关于点对称11抛物线有如下光学性质:由焦点的光线经抛物
3、线反射后平行于抛物线的对称轴;反之,-2-/12平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点. 已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则直线的斜率为()ABCD12如图,在中,以为直角顶点向外作等腰直角三角形,当变化时,线段长度的最大值为()ABCD第卷(共90 分)二、填空题(每题5 分,满分20 分,将答案填在答题纸上)13已知向量,若,则14已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为15已知实数满足约束条件则的取值范围为(用区间表示)16在九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳
4、马. 若四棱锥为阳马,侧棱平面且,则该阳马的外接球与内切球的表面积之和为三、解答题(本大题共6 小题,共70 分解答应写出文字说明、证明过程或演算步骤)17在递增的等比数列中,其中.( 1)求数列的通项公式;-3-/12( 2)记,求数列的前项和.18如图,在三棱柱中,平面,点为的中点.( 1)证明:平面;( 2)求三棱锥的体积 .19随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”遍布了一二线城市的大街小巷 . 为了解共享单车在 市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了 200 人进行抽样分析,得到下表(单位:人):( 1)根据以上数据,能否在犯错误
5、的概率不超过0.15 的前提认为市使用共享单车情况与年龄有关?( 2)现从所抽取的30 岁以上的网友中利用分层抽样的方法再抽取5 人 .( i )分别求这5 人中经常使用、偶尔或不用共享单车的人数;( ii )从这 5 人中,再随机选出2 人赠送一件礼品,求选出的2 人中至少有1 人经常使用共享单车的概率.参考公式:,其中.参考数据:-4-/1220已知椭圆()过点,离心率为,直线与椭圆交于两点.( 1)求椭圆的标准方程;( 2)是否存在实数,使得(其中为坐标原点)成立?若存在,求出实数的值;若不存在,请说明理由.21已知函数的图象在处的切线方程为,其中是自然对数的底数.( 1)若对任意的,都
6、有成立,求实数的取值范围;( 2)若函数的两个零点为,试判断的正负,并说明理由.请考生在22、 23 两题中任选一题作答,如果多做,则按所做的第一题记分22选修 4-4 :坐标系与参数方程已知曲线的参数方程为(为参数) . 以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.( 1)求曲线普通方程及直线的直角坐标方程;( 2)求曲线上的点到直线 的距离的最大值 .23选修 4-5 :不等式选讲已知函数.( 1)解不等式;( 2)记函数的值域为,若,试证明:.-5-/12文数参考答案及评分细则一、选择题1-5:BCADC6-10:CBBDD11、 12:AD二、填空题13114
7、1516三、解答题17解:( 1)设数列的公比为,则,又,或(舍).,即.故() .( 2)由( 1)得,.18解:( 1)连接交于点,连接.-6-/12在三棱柱中,四边形是平行四边形 .点是的中点 .点为的中点,.又平面,平面,平面.( 2),.在三棱柱中,由平面,得平面平面.又平面平面,平面.点到平面的距离为,且.19解:( 1)由列联表可知,.因为,所以能在犯错误的概率不超过0.15 的前提下认为市使用共享单车情况与年龄有关.-7-/12( 2)( i )依题意可知,所抽取的5 名 30 岁以上的网友中,经常使用共享单车的有(人),偶尔或不用共享单车的有(人) .( ii )设这 5 人
8、中,经常使用共享单车的3 人分别为;偶尔或不用共享单车的2 人分别为.则从 5 人中选出2 人的所有可能结果为,共 10 种.其中没有1 人经常使用共享单车的可能结果为,共 1 种 .故选出的2 人中至少有1 人经常使用共享单车的概率.20解:( 1)依题意,得解得,故椭圆的标准方程为.( 2)假设存在符合条件的实数.依题意,联立方程消去并整理,得,则,即或.设,则,.由,-8-/12得.,即,.即,即,即.故存在实数,使得成立 .21解:( 1)由题得,函数在处的切线方程为,.依题意,对任意的都成立,即对任意的都成立,从而.又不等式整理可得,.令,.令,得,当时,单调递减;当时,单调递增 .-9-/12.综上所述,实数的取值范围为.( 2)结论是.理由如下:由题意知,函数,易得函数在区间上单调递增,在区间上单调递减 .只需证明即可 .是函数的两个零点,相减,得.不妨令,则,即证,即证.,在区间上单调递增 .综上所述,函数总满足.22解:( 1)由曲线的参数方程(为参数),-10-/12得曲线的普
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质控知识培训内容课件
- 账务知识培训课件
- 2025年度文化遗产保护任务完成劳动合同范本
- 2025年度太阳能路灯工程招标合同范本
- 2025版微信在线签署在线音乐版权授权合同
- 2025房产及院落修缮与改造工程承包合同
- 2025年度土地承包经营权抵押贷款合同模板
- 2025版城市轨道交通建设合作协议书
- 2025版石灰石开采与运输一体化服务合同
- 2025版图书馆特色馆藏图书采购与展示协议合同
- 谵妄的观察及护理
- 旅游业应急事故处理及游客服务手册
- Unit 1 Teenage Life Reading and Thinking 教学设计-2024-2025学年高一英语人教版(2019)必修第一册
- 江西美术出版社(赣美版)美术四年级上册全册课件
- 食品安全管理台账制度
- 四川省住宅设计标准
- 立在地球边上放号课件省公开课一等奖新名师课比赛一等奖课件
- 机器学习辅助线段相交判定
- DL-T692-2018电力行业紧急救护技术规范
- 资产管理业务综合项目尽职调查底稿资料清单
- 大二学年规划
评论
0/150
提交评论