辽宁省2019年、2020年数学中考试题分类(11)——圆(含解析)_第1页
辽宁省2019年、2020年数学中考试题分类(11)——圆(含解析)_第2页
辽宁省2019年、2020年数学中考试题分类(11)——圆(含解析)_第3页
辽宁省2019年、2020年数学中考试题分类(11)——圆(含解析)_第4页
辽宁省2019年、2020年数学中考试题分类(11)——圆(含解析)_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2. (2020阜新)如图, 数为()BB. 52oC. 38oD 26o在ABC中,AB = BC ZABC = 90°,以AB为直径的OO交AC于点D ,点E为3(2020盘锦)如图,线段OB上的一点,OE.EB = .y3,连接DE并延长交CB的延长线于点F ,连接OF交OO于点G ,若 BF = 23 ,则BG的长是(A- TD.込4G)O是ABC的外接圆,半径为2cm若BC = 2cm,则ZA的度数为()B. 25oC. 15oD 10。5. (2020沈阳)如图,在矩形ABCQ中,AB = *, BC = 2,以点A为圆心,AD长为半径画弧交边BC于 点E,连接AE,则处

2、的长为()辽宁省2019年.2020年数学中考试题分类(H)一选择题(共8小题)1. <2020-阜新)如图,在平而直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45。, 得到正六边形OAIBfCIDiEi,则正六边形OAiBfClDlEt(/ = 2020)的顶点G的坐标是()(L)C(1-2)D(2,1)B为G)O的直径,C, D是圆周上的两点,若Z1BC = 38%则锐角ZBz)C的度DB. D-TA 42A. 一B.龙C. 一336. (2020-营口)如图,AB为G)O的直径,点C,点D是G)O上的两点,连接CA , CD9 AD 若ZelB = 40% 则

3、ZADC的度数是()7. (2019营口)如图, 则ZABC的度数是(130oC. 140。D. 160。CB. 70oC. 30。D. 90°CB为C)O的切线,点B为切点,CO的延长线交OO于点A,若ZA = 25。,则ZQ8(2019阜新)如图,C. 35°D. 40°BC是Oo的直径,A, D是OO上的两点,连接AB, AD, BD,若ZArW = 70°, )二填空题(共11小题)ZABC = 30% AC = G,则 AC 的长为10. (2020-朝阳)如图,点A, B, C是Glo上的点,连接AC9 BC,且ZACB = I5。,过点O作

4、ODIIAB交C)O于点D,连接D, BD,已知C)O半径为2,则图中阴影而积为C11. (2020葫芦岛)如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边MF连接庇',FC. 则ZERA的度数是12(2020-营口)一个圆锥的底而半径为3,高为4,则此圆锥的侧而积为_13. (2019-抚顺)如图,直线厶的解析式是Y =耳X,直线厶的解析式是y = 3.r,点厲在A上,山的横坐 标为亍 作Ag丄厶交人于点Br点场在厶上,以,B厶为邻边在直线厶间作菱形分 別以点人,禺为圆心,以A&为半径画弧得扇形BIAiC扇形B1B2C1 ,记扇形BIAiCi与扇形BiB2Ci重叠

5、部 分的面积为5:延长EG交厶于点血,点艮在人上,以B2A2,尽耳为邻边在II , I2间作菱形A2B2B3C2, 分别以点弘为圆心,以人5为半径画弧得扇形BAG和扇形B、Bc ,记扇形5人C与扇形BBBG重 叠部分的而积为二按照此规律继续作下去,则S”=_(用含有正整数口的式子表示)刁©14. (2019-营口)圆锥侧而展开图的圆心角的度数为216。,母线长为5,该圆锥的底而半径为_.15. (2019鞍山)如图,AC是Oo的直径,B, D是OO上的点,若Oo的半径为3, ZADB = 30。,则BC 的长为 CB16. (2019盘锦)如图,ABC内接于GlO , BC是GlO的

6、直径,OD丄AC于点D ,连接D,半径OE丄BC,如图,点 A, B, C 在 Oo 上,ZA = 60。,ZC = 70% OB = 9,则 A 的长为18. (2019锦州)如图,正六边形ABeDEF内接于OO,边长AB = 2 ,则扇形AOB的而积为19. (2019辽阳)如图,A, B,C, D是OO上的四点,且点B是AC的中点,3D交OC于点E , ZAOC = Io0°, ZOCD = 35°,那么 ZOED=三解答题(共20小题)20. (2020盘锦)如图,BC是OO的直径,AD是C)O的弦,AD交BC于点E,连接AB, CD,过点E作 EF丄AB,垂足为F

7、, ZAEF = AD.(1)求证:AD丄BC;(2)点G在BC的延长线上,连接AG9 ADAG = 2AD 求证:AG与Oo相切;p O 当 = 7, CE = 4时,直接写出CG的长BF 5A21(2020葫芦岛)如图,四边形ABa)内接于OO, AC是宜径,AB = BC,连接3D,过点D的直线与CA的延长线相交于点且ZEZM = ZAC£>(1)求证:直线DE是OO的切线:522(2020大连)四边形ABCD内接于G)O , AB是C)O的直径,AD = CD(1)如图 1,求证ZABC = 2ZAO:(2)过点D作Oo的切线,交BC延长线于点P (如图2). tanZ

8、CB = -, BC = H求PD的长.23(2020鞍山)如图,AB是C)O的直径,点C,点D在C)O上,AC = CD. AD与BC相交于点AF 与OO相切于点A ,与BC延长线相交于点F(1)求证:AE = AF.(2)若EF = I2, SinAABF =-,求G)O 的半径当DC为C)O的切线时.24. (2020沈阳)如图,在ABC中,ZACB = 90°,点O为BC边上一点,以点O为圆心,OB长为半径 的圆与边AB相交于点D ,连接QC,(1)求证:DC = AC:请直接写岀DC的长为以/W为直径的0O交AC于点D,连接3D,ZCBD的平分线交OO25. (2020丹东

9、)如图,已知AABG 于点E,交AC于点F,且AF = AB(1)判断BC所在直线与OO的位置关系,并说明理由:(2)若 tanZFBC = -, DF = 2、求Oo 的半径(2)若tanZFC = l, QF = 2,求Oo 的半径326. (2020营口)如图,ABC中,ZACB = 90o, BO为ABC的角平分线,以点O为圆心,OC为半径作 G)O与线段AC交于点D(1)求证:AB为G)O的切线:3(2)若 tan A = -, AP = 2,求 BO 的长.427. (2020-辽阳)如图,在平行四边形ABCD中,AC是对角线,ZGAB = 90°,以点A为圆心,以AB的

10、长为半径作04,交BC边于点E,交Ae于点F,连接D£(1)求证:DE与CM相切:(1)求证:DF是Oo的切线.28. (2019-朝阳)如图,四边形ABCD为菱形,以AD为直径作C)O交AB于点F ,连接D3交C)O于点H , E是BC上的一点,且BE = BF,连接DE(1)求证:D£是G)O的切线D是AC上一点,过B, C, D三点的Oo交M于 点E,连接ED,EC ,点F是线段AE上的一点,连接FQ,英中ZFDE = ZDCE30. (2019盘锦)如图,AABC内接于Q, AD与BC是OO的直径,延长线段AC至点G, IilfAG = AD , 连接DG交OO于点

11、E, EFMAB交AG于点、F (1)求证:EF与C)O相切.31. (2019丹东)如图,在RlABC中,ZACB = 90° ,点D在AB上,以AD为直径的G>O与边BC相切于点E,与边AC相交于点G ,且AG = EG,连接Go并延长交G)O于点F ,连接 (1)求证:AO=AG.BF是Glo的切线(2)若BD = 6.求图形中阴影部分的面积.判断DE与C)O的位置关系,并说明理由.若点是DBC的中点,°。的半径为2,求BC的长.32. (2019抚顺)如图,在ABQ 中,ZACe = 90。,CA = CB ,点 O在ABQ 的内部,G)O 经过 B,C 两

12、点,交AB于点D,连接Co并延长交AB于点G ,以GD, GC为邻边作OGDEC(1)(2)BM平分ZABD. MF丄BD于点F(1)求证:MF是G)O的切线;(2)若CN = 3、 BN = 4,求CM 的长.AE丄BC,垂足为点以AE为直径的Oo与边仞相 切于点F,连接BF交OO于点G,连接EG(1)求证:CD = AD+ CE (2)若 AD = 4CE ,求 tailZEGF 的值35. (2019-葫芦岛)如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的QO交矩形对角 线AC于点F,在线段CD上取一点£,连接£F,使EC = EF(1)求证:EF是G)

13、O的切线;3(2)若COSZC4D = -, AF = 6, MD = 2,求FC的长36. (2019沈阳)如图,AB是G)O的直径,BC是G)O的弦,直线MN与G)O相切于点C,过点B作BD丄MN 于点D(1)求证:ZABC = ZCBD ;(2)若BC = 4卡,CD = 4,则0O的半径是N37. (2019-大连)如图1,四边形ABeD内接于OO , AC是C)O的直径,过点A的切线与CD的延长线相 交于点P且ZAPC = ZBCP(1)求证:ABAC = 2ZACD:(2)过图1中的点D作DE丄AC,垂足为E (如图2),当BC = 6、AE = 2时,求G)O的半径PP38. (

14、2019辽阳)如图,处是G)O的直径,点A和点D是OO上的两点,连接E, AD. DE.过点A作 射线交BE的延长线于点C ,使AEAC = ZEDA(1)求证:AC是Oo的切线;(2)若CE = AE = 2氐求阴影部分的而积.D39. (2019本溪)如图,点P为正方形ABCD的对角线AC ±的一点,连接BP并延长交CD于点G 交AD 的延长线于点F , OO是DEF的外接圆,连接QP(1)求证:DP是C)O的切线:(2)若tanZPDC =-,正方形ABCD的边长为4,求OO的半径和线段OP的长.AB辽宁省2019年.2020年数学中考试题分类(H)圆一选择题(共8小题)1(2

15、020-阜新)如图,在平而直角坐标系中,将边长为1的正六边形如CDE绕点O顺时针旋转i个45。,得到正六边形OAfBfClDlEi,则正六边形OAiBfClDiEf(/ = 2020)的顶点G的坐标是(【解答】解:由题意旋转8次应该循环,D. (2,1) 2020*8 = 252 4,.G的坐标与G的坐标相同,.C(-LA),点C与C4关于原点对称,. C4(L-VJ)» 顶点C”的坐标是(L-3) >故选:A2. (2020阜新)如图,AB为OO的直径,C , D是圆周上的两点,若ZABC = 38。,则锐角ZwC的度 数为()C. 38。D. 26°. ZBDC

16、= ZfiAC = 52。【解答】解:连接AC, AB是(DO的直径, .ZAC = 90o, ZABC = 38°, /. ZC = 90°-ZABC = 52。,在ABC中,AB = BC, ZABC = 90°,以AB为直径的C)O交AC于点D ,点E为线段OB上的一点,OE:EB = :*、连接£并延长交CB的延长线于点F,连接OF交OO于点G ,若 BF = 2羽,则BG的长是()2T【解答】解:连接O£、BD,在 ABC 中,AB = BC,ZABC = 90。, ZA = ZC = 45o,AB是直径,.ZADB = 90o, O

17、A = OB9.OD 丄 ABf.ZAOD = 90。,:.ZAOD = ZABC.:.ODllFC、SDOESMBE,BF BEOD OE.OB = OD, OEEB = :*, .tan ZfiOF = -= 3 ,OB:.ABOF = Of .:.BF = 23 ,AoB = 2,BG 的长=60/7x2 =r1803故选:C.4. (2020-鞍山)如图,G)O是ABC的外接圆,半径为2cm 若BC = 2cm,则ZA的度数为()A5. (2020沈阳)如图,在矩形ABCD中, 点连接A£,则处的长为()B = 3 , BC = 2、以点A为圆心,AD长为半径画弧交边BC于B

18、. DiBC. 15oD 10。A. 30oB. 25o【解答】解:连接OB和OC , 圆O半径为2, BC = 2. .OB = OC = BC、ZBC为等边三角形, /.ZBOC = 60%【解答】解:四边形ABCD是矩形,. AD = BC = 2, Z = 90o> .AE = AD = I,. AB = >/3 ,/.cosZBAE = -= 2,AE 2:.ZBAE = 30%/.ZE4D = 60o,加的长=60rx21802T故选:C6. (2020营口)如图,AB为G)O的直径,点C,点D是G)O上的两点,连接C4 CD、AD 若ZCAB = 40° 则

19、ZADC的度数是()B. 130° 连接BC,A. 110。【解答】解:如图,AB为C)O的直径,AZACe = 90°,AZB = 90o-ZcAB = 90o-40o = 50o , ZB + ZADC = 180o , ZADC = 18O°-5O° = 130°.C. 140oD. 160o则ZABC的度数是()A, D是OO上的两点,连接AB, AD,BD,若ZADB = 70P,C【解答】解:连接AC,BC是G)O的直径, /.ZfiAC = 90°, ACB = ZADB = 70°, .ZABC = 90&#

20、176; 一 70。= 20。B. 70° 如图,C. 30。D. 90°的度数是(CB为G>O的切线,点B为切点,CO的延长线交C)O于点A ,若ZA = 25。,则ZQC. 35oD. 40oA. 25oB. 30o【解答】解:如图:连接OB,/.ZCO = 2ZA = 2×25o = 50%BC与C)O相切于点3,AZoBC = 90° ZC = 90。一 ZBoC = 90。一 50。= 40。 故选:D.二填空题(共11小题)ZABC = 30% AC = 6,则 AC 的长为 2 V ZAOC = 2ZABC, ZABC = 30

21、76;,/.ZAOC = 60°. OA = OC»S.MOC是等边三角形,:.OA = OC = AC = 6:.AC的长=竺兰= 2”,180故答案为2兀10. (2020朝阳)如图,点A, B, C 是 G)O 上的点,连接 M, AC, BC,且 ZACB = I5% 11 点 O作 ODIIAB 交OO于点D,连接AP, BD,已知G)O半径为2,则图中阴影而积为_彳_.DC【解答】解:YZACB = I5°,/.ZAO = 30o, OD H AB. ¾B> =30 × 22360Jt3故答案为:彳11. (2020-葫芦粘)

22、如图,以AB为边,在AB的同侧分别作正五边形ABeQE和等边MBF,连接F£, 则ZEM的度数是_66。_【解答】解:正五边形ABCD.z(5-2×18Oo = IO8%. BF是等边三角形,/.ZMB = 60o ZEAF = 108°-60° = 48° ,. AE = AF»ZAEF = ZAFE = l×(180o-48°) = 66° ,2则此圆锥的侧而积为_ 15穴_故答案为:66。12. (2020-营口)一个圆锥的底而半径为3,髙为4,【解答】解:圆锥的底而半径为3,髙为4,母线长为5,二

23、圆锥的侧而积为:rl = ×3×5 = 5 ,故答案为:1513. (2019抚顺)如图,直线A的解析式是y = T-直殂的解析式是5'点Z A的横坐标为?,作AIBl丄人交厶于点E,点禺在厶上,以BA,为邻边在直线/, . I2间作菱形人BBC ,分 别以点A,耳为圆心,以A&为半径画弧得扇形BAG和扇形B1B2C1 ,记扇形BIAG与扇形BBC重叠部 分的而积为S:延长尽G交A于点血,点艮在厶上,以M:*耳耳为邻边在厶,人间作菱形A2B2BiC2, 分别以点人,禺为圆心,以AB?为半径画弧得扇形BAC2和扇形B2ByCz ,记扇形B2A2C2与扇形BZB

24、iCZ重叠部分的而积林按照此规律继续作下去,则一_(分9(|严(用含有正整如的式子表示)【解答】解:过人作AD丄X轴于D,连接B1C1, B2C29 BG,耳C4,点人在4上,A的横坐标为点A(|, £),/.OD = - 4D = -2 “ 2/. OAl = JAP + OD2 =二在 Rt AyOD 中,AiD = OAy.ZA1OD = 30。,直线厶的解析式是y = 3x, .ZBQD = 60。, /.ZAxOBl =30%/. AJBI=OAJ tan ZA1OS1 = 1, AIBl丄厶交£于点亦 ."BQ = 60。,/. ZA1B1B2 =12

25、0f .ZlAiCl=60o.四边形AiBiB2Cl是菱形,. ABC是等边三角形,伽Ig- S*c) = 2x60心迺“3604-AxCxZZBlB29/.ZAy41Cl =Z1OB1 =30°,1 3/.AC1=-, B2 =A2C1+B2C1=-, ZA2B2O = 60° .2 23x(討,60 ×(-)2 3 -1同理,S2 = 2(SuJ形輕q 一Smg) = 2 XI面亠×(=×()J,.sn=(f-f)×232314. (2019-营口)圆锥侧而展开图的圆心角的度数为216。,母线长为5,该圆锥的底面半径为3 【解答】

26、解:设该圆锥的底而半径为r,根据题意得2"=氓二,解得r = 3.180故答案为315. (2019鞍山)如图,AC是OO的直径,B, D是OO上的点,若OO的半径为3, ZADB = 30%则BC 的长为2/r【解答】解:由圆周角左理得,ZAOB = 2ZADB = 60%AZBOC = I80o-60° = 120° ,:.BQ 的长=12ci -3=2,180故答案为:2”16. (2019-盘锦)如图,ABC内接于C)O , BC是C)O的直径,OD丄AC于点D ,连接3D,半径OE丄BC, 连接E4,以丄BD于点F若OD = 2,则BC= 45【解答】解

27、: OD丄AC,.AD = DC,BO = CO,.1B = 2OD = 2×2 = 4,BC是G)O的直径,/.ZBAC = 90°,OE 丄 BC,.ZBOE = ZCoE = 90。, BE = EC ,. ZBAE = ZCAE = IZBAC = l×90o = 45%2 2E4丄必.ZABD = ZADB = 45°,.AD = AB = A9.DC = AD = 4>.AC = 8,.BC = AB2 + AC2 = 42+8f = 45 .故答案为:4肩.17. (2019铁岭)如图,点 A, B, C 在 OO 上,ZA = 60

28、o. ZC = 70o, OB = 9,则 A 的长为_8”【解答】解:连接Q4,. OA = OC /. ZCtAC = ZC = 70°,. ZOAB = ZoAC - ZfiAC = 70。一 60° = 10°, OA = OB,/.ZOftA = Zaw = IOo,/.ZAOB = 180o-10o-10° = 160° ,则A的长Jgy 8兀,18018. (2019锦州)如图,正六边形ABeDEF内接于OO ,边长AB = 2,贝煽形AoB的而积为_午【解答】解:正六边形ABCDEF内接于OO,AZAOB = 60°,

29、 OA = OB >.AOB是等边三角形,.OA = OB = B = 2,:.扇形 AoB 的而积=6(>>/? X 2-=,3603故答案为:Zs319. (2019辽阳)如图,A, 3,C, D是G)O上的四点,且点“是AC的中点,BD交OC于点E , ZAOC = Io0。, ZOCD = 35% 那么 ZOED = _60。_ AB = BC ,ZAOB = ZBoC = 50%AZBDC = IZBOC = 25°,2 ZOED = ZECD + ZCDB , ZECD = 35。,乙OED = 60° ,故答案为60。三.解答题(共20小题)

30、20. (2020盘锦)如图,BC是OO的直径,AD是OO的弦,AD交BC于点E,连接AB, CD、过点E作EF 丄 AB,垂足为 F, ZAEF = AD.(1)求证:AD丄(2)点G在BC的延长线上,连接AG. ADAG = 2AD 求证:AG与OO相切; 当= L CE = 4时,直接写出CG的长BF 5A/. ZA£F +ZEAF = 90o, ZAEF = ZD, ZABE = ZD,/.ZABE+AEAF = 9GP 9 .ZAEB = 90o,:.AD丄BC(2)证明:连接OA, AC. . AD 丄 BC,AE = ED.CA = CD9.ZD = ZcA£

31、>,ZGAE = 2ZD.ZC4G = ZC4D = ZD,. OC = OA»ZOCA = ZOAC 9ZCEA = 90%.ZC4E +ZACE = 90% ZCAG+ ZOAC = 90o f .04 丄 AG,:.AG是OO的切线 解:过点C作CH丄AG于H设CG = x, GH =y. .C4平分ZGAE, CH丄AG9 CE丄AE,.CH = CE, ZAEC = ZAHC = 90°, AC = AC, EC = CH ,. RtACE RtACH(HL),.AE = AH,EF丄B, BC是直径,. /BFE = ZBA C、:.EFIlAC>E

32、C _AF _2BE" BF "5 *VCE = 4,.BE = 10,.BC丄AD, AC = CD9. .ZCAe = ZABC .ZA£C = ZAEB = 90。,. AEBcCE,.AE _ EBCE = E4 ,/.AE2 =4× 10,.E>0 ,.AE = 210 ,.AH = AE = 2 应,/ ZG = ZG , ZCHG = ZAEG = 90。,:MHCSMEA ,.GH HC GCG£ " E4 " GA ' $ 二 4 二 X x + 4"210 "210 +

33、y '21(2020葫芦岛)如图四边形ABCD内接于OO , AC是直径,AB = BC ,连接3D,过点D的直线与 C4的延长线相交于点E,且ZEzM = ZACD.(1)求证:直线QE是OO的切线:. .ZOCD = ZODC,VAC是直径,AZADC = 90°,. ZEM = ZACD,/ .ZADO +ZODC = ZEDA +ZADO = 9 ,/.EDO = ZEDA + ZADO = 90%OD = DE,O£>是半径,直线处是OO的切线(2)解法一:过点A作AF丄BQ于点F,则ZW = ZAM) = 90。,-AC是直径,/.ZABC = Z

34、ADC = 90o,在RtACD中,AZ) = 6, CD = S9 .AC2 =AD2+CD2 =62 +82 =100, AAC = IO,在 RtABC 中,AB = BC ,. .ZBAC = ZACB = 45°.AB Sin ZACB =,AC二 AB = sin45oAC = 5y2 , ZADB = ZACB = 45。, T 在 RtAADF 中,AD = 6, Sin ZADF =,AD F = sin45oAD = 32 .DF = AF = 3迈、在RlABF中,.BFI = AB2 _ AF2 = (52)2 _ (32)2 = 32 ,.BF = 4屁:.

35、BD = BF+ DF =7迈解法二:过点B作BH丄BD交DC延长线于点AZDBH=90°,.AC是直径,AZABC = 90%. ZABD = 90o-ADBCZCBH =90o-ZDBC, ZABD = ZCBH 四边形ABCD内接于QO. ZBAD + ZBCD = 180。, ZBCD+ZBCH = 180°,AZBAP = ZBC7/» AB = CB,:.MBD = CBH(ASA),. .AD = CH , BD = BH ,.4Z) = 6, CD = 8 ».DH=CD + CH = 14,在 RtABDH 中,-BD2 =DH2-BH

36、2 =98 9 . BD = Iy/2 .DSH22. (2020大连)四边形ABCD内接于OO , AB是Oo的直径,AD = CD. (1)如图 1,求证 ZABC = 2ZACD;过点D作OO的切线,交眈延长线于点P (如图2).若tanzg,=1,求PD的长.BSl【解答】(1)证明:-AD = CD . DAC = ZACD./. ZADC+ 2ZACD = 180° , 又四边形ABCD内接于GIo , .ZABC + ZADC = I80%:.ZABC = IZACDx(2)解:连接OZ)交AC于点E,BB.OZ)丄 DP,. ZODP = 90°, 又 AD

37、 = CD9.OD丄AC, AE = EC9.ZDEC = 90o,AB是GlO的直径,AZAC = 90o,/.ZECP = 90o.四边形DECP为矩形,:.DP = EC.5T tan ZCAB = BC = 1,12.CB _ 1 _ 5AC = AC= 12 *. .AC = -,5ec=1c=->25/. DP = -.523. (2020鞍山)如图,AB是Oo的直径,点C,点D在OO上,AC = CD9 AD与BC相交于点£, AF 与C)O相切于点A ,与BC延长线相交于点F(1)求证:AE = AF(2)若EF = 12, SinZABF =-,求OO 的半径

38、.5【解答】(1)证明:-.AF与C)O相切于点A, .以丄AB,/.ZMB = 90o,.ZF + ZB = 90o,AB是OO的直径,.ZAC = 90o,ZC4E+ZCE4 = 90o, AC = CD9:.ZCAE = ZD.ZD + ZCE4 = 90o,VZD = Z,/.Z + ZCE4 = 90o. .ZF = ZCEA ,. .AE = AF (2)解: AE = AF ZAe = 90%.CF = CE = LEF = 6,2 ZABF = ZD = ZG4E,.-.SinZABF=SinZCAE = I.CE _ 6 _3E = AE = 5 ,. AE = IOt AC

39、 = E-cF = JloF-臣=8,V SinZABC =,AB AB 5沁理,3:.OA = -AB =.23即OO的半径为竺.3OB长为半径24. (2020-沈阳)如图,在ABC中.ZACB = 90P ,点O为BC边上一点,以点O为圆心, 的圆与边AB相交于点D,连接Z)C,当DC为OO的切线时(1)求证:DC = ACX3CD是G)O的切线,.CD 丄 OD, .ZODC = 90。, . ZBDO +ZADC = 90。,ZACB = 90°,AZA+ ZB = 90% OB = OD.ZOBD = ZODB /.ZA = ZADC, :.CD = ACX(2) VDC

40、 = DB. 乙 DCB = ZDBC,.Zdcb = ADBC = ABDO9 ZDCB + ADBC + ZBDO+ZODC =180。.ZDCB = ZDBC = ZBDO = 30° ,.DC =冬OD =书,故答案为:5.25(2020丹东)如图,已知MBC,以初为直径的G)O交Ae于点D ,连接3D, ZCBQ的平分线交0。 于点E,交AC于点F,且AF = AB(1)判断BC所在直线与OO的位置关系,并说明理由:(2)若 tanZFBC = i, DF = 2、求G>O 的半径3【解答】解:(1) BC所在直线与C)O相切: 理由: Ali为OO的直径, /.ZA

41、DB = 90o ,AB = AF.ZABF = ZAFB'BF平分ADBC, ZDBF = ZCBF , ZABD 十乙DBF = ZCBF + ZC,.ZABD = ZC,VZA+ ZlBD = 90o,.ZA + ZC = 90o,:.ZABC = 90o.AB 丄 BC,. BC是C)O的切线;(2) .BF平分ZDBC, ZDBF = ZCBF ,DF 1/. tan ZFBC = tail ZDBF =一,BD 3VDF = 2,ABD = 6,设 AB = AF = X,Az) = A* 2 f AB2 =AD2+BD2,:.X2 =(X 2)2 +62 , 解得:x =

42、 10».AB = IOt.>O的半径为526(2020营口)如图,ABC中,ZACB = 90o, Bo为ABC的角平分线,以点O为圆心,OC为半径作 G)O与线段AC交于点D(1) 求证:AB为C)O的切线:3(2) 若 tan A = - , AD = 2 .求 BO的长.4【解答】(1)证明:过O作OH丄于H,ZACB = 90°,.OC 丄 BC,BO为ABC的角平分线,OH丄AB ,.QH=OC'即OH为OO的半径,OH 丄 AB,二AB为C)O的切线;(2)解:设C)O的半径为3八 则OH= OD = OC = 3x,3在 RtAOH 中,V t

43、an A = -,4OH 3/.=一,AH 433.= 一 ,AH 4. A=4 >/. AO = OH2 + AHi = (3x)2 + (4-)2 = 5x,VA£) = 2,s.AO = OD + AD = 3x+2,.3x + 2 = 5X,.X = 1 ,.6H = 3 + 2 = 5, OH = OD = OC = 3x = 3.- AC = OA + OC = 5 + 3 = 8,在 RtAABC 中,V tanA = -,AC3BC = ACtan A = 8 x = 6 ,4/.OB = OC2+BCr = 32+67 = 35 27. (2020辽阳)如图,

44、在平行四边形ABa)中,AC是对角线,ZCAB = 90Of以点A为圆心,以AB的 长为半径作O4,交BC边于点E,交AC于点F,连接加(1)求证:加与04相切:【解答】(1)证明:连接AE,四边形ABeD是平行四边形,AD = BC ADUBC.ZDAE=ZAEB,/AE = AB.ZAEB = ZAB C ,.ZZME = ZABC, MED = BAC(SAS)9 . .DEA = ZCAB ,ZCAB = 90°,/.ZDE4 = 90o,.DE 丄 E,庖是04的半径,.QE与CM相切; 解:VzABC = 60o , AB = AE = 4,.MBE是等边三角形,.AE

45、= BE, ZEAB = 60°,ZCAB = 90o 9.ZCAE = 90o-ZE4B = 90。一60o = 30r ZACB = 90o-ZB = 90o-60o = 30o > :.ZCAE = ZACB,.AE = CE, .CE = BE,. SWC =BAC = 1×4x43=85,'- SnCE - SWe =× * 羽=4* ,VZGAE = 30o, AE = 4,30×AE2-360_ 30 × 42360 S切形如=Z=28. (2019-朝阳)如图,四边形ABCD为菱形,以AP为直径作OO交AB于点F

46、,连接DB交OO于点H, E是BC上的一点,且BE = BF,连接DE.(1)求证:DE是Oo的切线四边形ABCD为菱形,/./W = BC = CD = ZM, ADllBC、ZDAB = ZC , BF = BE,.AB-BF = BC-BE, 即AF = CE,SDAF SDCE(SAS)9.ZDFa = ZDEC,AQ是OO的直径,.ZDM = 90o, /.ZDEC = 90°ADllBC、:.ZADE = ZDEC = , OD丄DE.CQ是OO的半径, .DE是OO的切线:(2)解:如图2,连接AH, AD是Oo的直径, ZAHD = DFA = 90.ZDFB =网,

47、. AD = AB, DH = y/5 ,.DB = 2DH = 2在 RtAADF 和 RtBDF 中,/ DF2 =AD2- AF2, DF2=BD2-BF2,.AD2-AF2 =DB2-BF2f. AD2 - (AD - BFy = DBl - BF2 , AD2 -(AD - 2)2 = (25)2 - 22,. AT> = 5 3的半径为专.29. (2019鞍山)如图,在RtAABC中,ZACB = 90% D是AQ上一点,过B, Cf D三点的G)O交 M 于 点E,连接ED,EC ,点F是线段AE上的一点,连接2,其中ZFDE = ZDC£(1) 求证:M是C)

48、O的切线(2) 若D是AC的中点,ZA = 30o, BC = 4,求DF的长.【解答】解:(1) VZACB = 90°,点B, D在QO ±, . .3D 是Oo 的直径,ZBCE = ZBDE, FDE = ADCE, ZBCE+ZDCE = ZACB = 90° ,.ZBDE +/FDE = 90P,即 ZBDF = 90°,.DFIBD,又TBD是G)O的直径, .DF是C)O的切线(2)如图,v ZACB = 90o, ZA = 30o > BC = 4 > B/. AB = 2BC = 2×4 = 8 , AC = A

49、Br-BC2 =842 =43点D是AC的中点, :.AD = CD = LAC = 23, 3D是C)O的直径,AZDEB = 90°./. ZDEA = 180o-ZDEB = 90° , DE = LAD = Lx2*=* 2 2在 RtBCD 中,BD = JBC2 + CD2 =翻 + (2州=27 , 在 RtABED 中,BE = D2 -DE2 = (2)2(3)2 = 5 , .ZFDE = ZDCE, ADCE = ZDBE, .FDE = ADBE, ZDEF = ZBED = 90。,.MDEsQBE,DF DE DF 3BD BE 27530. (

50、2019盘锦)如图,AABC内接于C)O, AD与BC是OO的直径,延长线段AC至点G, AG = AD > 连接DG交C)O于点£, EFIlAB交AG于点F(1) 求证:盯与OO相切.(2) 若EF = 23 , AC = 4,求扇形OAC的而积D EL7【解答】(1)证明:如图1,连接OE-OD = OEy.ZD = ZOED,AD = AG9.ZD = ZG,/.ZOED = ZG,:.OE/AG9BC是G)O的直径,:.ZBAC = 90%-EFllAB.Z4F +ZAFE =180%/.ZA7 = 90o,-OEllAG >.ZOEF = 180。一 ZA 比

51、= 90。,.OE丄EF ,.空与C)O相切:(2)解:如图2,连接OE,过点O作OH丄AC于点 VAC = 4,:.CH=-AC = 22 ZOHF = AHFE = ZOEF = 90o ,四边形OEFH是矩形, OH = EF = 2*.在 RtOHC 中,OC = yCH2 + OH2 = 22 + (23)2 = 4 ,VCM = AC = OC = 4,.AAOC是等边三角形, ZAOC = 60° ,60. 428图131. (2019丹东)如图,在RtAABC中,ZACB = 90° ,点D在AB上,以AD为直径的G)O与边BC相切于 点E,与边AC相交于点

52、G ,且AG = EG9连接Go并延长交C)O于点F ,连接BF(1) 求证:(I)AO = AG BF是C)O的切线(2) 若BD = 6.求图形中阴影部分的面积.【解答】解:(1)证明:如图1,连接OG V 06)与BC相切于点.ZOEB = 90o,ZACB = 90°,.ZACB = ZOEB:.ACllOE. ZGOE = ZAGO, AG = EG9/. ZAOG = ZGOE ,:.ZAOG = ZAGO.AO = AG: 由知,AO = AG,. AO = OG,:.ZAO = OG = AG.AOG是等边三角形,/.ZAGO = ZA = ZA = 60%:.BOF = ZAOG = 60°.由知,ZGOE = ZAOG = 60°,.ZEOB = 180o - ZAoG-ZGOE = I80° - 60。一 60。= 60°, .ZFOB = ZEOB,-OF = OEy OB = OB9sofb=soeb(sas)9 ZOFB = ZOEB =

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论