




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、“地”和“接地”的概念2 x8 ?0 R$ H0 b: d2 X9 l& p1地) d8 q& L7 Z, D(1)电气地大地是一个电阻非常低、电容量非常大的物体,拥有吸收无限电荷的能力,而且在吸收大量电荷后仍能保持电位不变,因此适合作为电气系统中的参考电位体。这种“地”是“电气地”,并不等干“地理地”,但却包含在“地理地”之中。“电气地”的范围随着大地结构的组成和大地与带电体接触的情况而定。% h" c1 j4 f8 W0 (2)地电位与大地紧密接触并形成电气接触的一个或一组导电体称为接地极,通常采用圆钢或角钢,也可采用铜棒或铜板。图 1示出圆钢接地极。当流入地
2、中的电流I通过接地极向大地作半球形散开时,由于这半球形的球面,在距接地极越近的地方越小,越远的地方越大,所以在距接地极越近的地方电阻越大,而在距接地极越远的地方电阻越小。试验证明:在距单根接地极或碰地处 20m 以外的地方,呈半球形的球面已经很大,实际已没有什么电阻存在,不再有什么电压降。换句话说,该处的电位已近于零。这电位等于零的“电气地”称为”地电位”。若接地极不是单根而为多根组成时,屏蔽系数增大,上述 20m 的距离可能会增大。图 1中的流散区是指电流通过接地极向大地流散时产生明显电位梯度的土壤范围。地电位是指流散区以外的土壤区域。在接地极分布很密的地方,很难存在电位等于零的电气地。 (
3、3)逻辑地电子设备中各级电路电流的传输、信息转换要求有一个参考的电位,这个电位还可防止外界电磁场信号的侵入,常称这个电位为“逻辑地”。这个“地”不一定是“地理地”,可能是电子设备的金属机壳、底座、印刷电路板上的地线或建筑物内的总接地端子、接地干线等;逻辑地可与大地接触,也可不接触,而“电气地”必须与大地接触。! 6 & ) J; 5 H2接地; j/ E1 o7 R7 e+ I% ) t+ w将电力系统或电气装置的某一部分经接地线连接到接地极称为“接地”。“电气装置”是一定空间中若干相互连接的电气设备的组合。“电气设备”是发电、变电、输电、配电或用电的任何设备,例如电机、变压器、电器、
4、测量仪表、保护装置、布线材料等。电力系统中接地的一点一般是中性点,也可能是相线上某一点。电气装置的接地部分则为外露导电部分。“外露导电部分”为电气装置中能被触及的导电部分,它在正常时不带电,但在故障情况下可能带电,一般指金属外壳。有时为了安全保护的需要,将装置外导电部分与接地线相连进行接地。“装置外导电部分”也可称为外部导电部分,不属于电气装置,一般是水、暖、煤气、空调的金属管道以及建筑物的金属结构。外部导电部分可能引入电位,一般是地电位。接地线是连接到接地极的导线。接地装置是接地极与接地线的总称。超过额定电流的任何电流称为过电流。在正常情况下的不同电位点间,由于阻抗可忽略不计的故障产生的过电
5、流称为短路电流,例如相线和中性线间产生金属性短路所产生的电流称为单相短路电流。由绝缘损坏而产生的电流称为故障电流,流入大地的故障电流称为接地故障电流。当电气设备的外壳接地,且其绝缘损坏,相线与金属外壳接触时称为“碰壳”,所产生的电流称为“碰壳电流”。2 p* q) j( - H/ C( 4 C# w3接触电压9 o; p! t4 i* A2 ?- p% K; o$ f/ D5 U( P; B" R. J( Q$ E在图2 中,当电气装置M绝缘损坏碰壳短路时,流经接地极的短路电流为 Id 。如接地极的接地电阻力 Rd ,则在接地极处产生的对地电压 Ud = Id·Rd ,通常
6、称 Ud为故障电压,相应的电位分布曲线为图 2 中的曲线 C 。一般情况下,接地线的阻抗可不计,则M上所呈现的电位即为 Ud 。当人在流散区内时,由曲线 C 可知人所处的地电位为 U 。此时如人接触M,由接触所产生的故障电压 Ut = Ud -U 。人站立在地上,而一只脚的鞋、袜和地面电阻为 Rp,当人接触M时两只脚为并联,其综合电阻为 Rp2 。在 Ut的作用下,Rp2 与人体电阻RB串联,则流经人体的电流 IB = Uf(RB+Rp2),人体所承受的电压 Ut = IB·RB = Uf ·RB(RB+Rp2)。这种当电气装置绝缘损坏时,触及电气装置的手和触及地面的双脚之
7、间所出现的接触电压Ut与M和接地极间的距离有关。由图 2 可见,当 M 越靠近接地极,U 越大,则 Uf 越小,相应地 Ut 也越小。当人在流散区范围以外,则 U = 0,此时 Uf = Ud,Ut = Ud·RB(RB+Rp 2),Ut为最大值。由于在流散区内人所站立的位置与 U 有关,通常以站立在离电气装置水平方向 0.8m 和手接触电气装置垂直方向 1.8m 的条件计算接触电压。如电气装置在流散区以外,计算接触电压 Ut 时就不必考虑上述水平和垂直距离。# A% q$ X7 6 i' b6 R; i: g4跨步电压( Z7 o! f- & B$ r& O
8、$ V i6 J/ T人行走在流散区内,由图 2 的曲线 C 可见,一只脚的电位为 U1 ,另一只脚的电位为 U2 ,则由于跨步所产生的故障电压 Uk = U1 - U2 。在Uk 的作用下,人体电流 IB从人体的一只脚的电阻 Rp ,流过人体电阻 RB ,再流经另一只脚的电阻 Rp ,则人体电流 IB = Uk(RB十2Rp)。此时人体所承受的电压 Ut = IB·RB = Uk·RB(RB+2p) 。这种当电气装置绝缘损坏时,在流散区内跨步的条件下,人体所承受的电压 Uk为跨步电压。一般人的步距约为 0.8m,因此跨步电压 Uk以地面上 0.8m
9、水平距离间的电位差为条件来计算。由图 2 可见,当人越靠近接地极,U1 越大。当一只脚在接地极上时 U1 = Ud ,此时跨步所产生的故障电压 Uk为最大值,即图 2 中的 Ukm,相应地跨步电压值也是最大值。反之,人越远离接地极,则跨步电压越小。当人在流散区以外时,U1 和 U 2 都等于零,则 Uk = 0 ,不再呈现跨步电压。; b$ Q) A N) k0 f! s5流散电阻、接地电阻和冲击接地电阻( F" V( V7 u Q. d接地极的对地电压与经接地极流入地中的接地电流之比,称为流散电阻。电气设备接地部分的对地电压与接地电流之比
10、,称为接地装置的接地电阻,即等于接地线的电阻与流散电阻之和。一般因为接地线的电阻甚小,可以略去不计,因此,可认为接地电阻等于流散电阻。为了降低接地电阻,往往用多根的单一接地极以金属体并联连接而组成复合接地极或接地极组。由于各处单一接地极埋置的距离往往等于单一接地极长度而远小于40m,此时,电流流入各单一接地极时,将受到相互的限制,而妨碍电流的流散。换句话说,即等于增加各单一接地极的电阻。这种影响电流流散的现象,称为屏蔽作用,如图 3所示。- a8 U' F4 n6 | d, m( m# U5 o# C* A e8 : H
11、;w, p* l( B由于屏蔽作用,接地极组的流散电阻,并不等于各单一接地极流散电阻的并联值。此时,接地极组的流散电阻9 k# q5 O: u, ?Rd = Rd1(n·)(1)% N4 o4 a" L C: Y9 W式中:Rd1单一接地极的流散电阻n 单一接地极的根数 接地极的利用系数,它与接地极的形状、单一接地极的根数和位置有关4 T A* ) D, A) b/ f; f以上所谈的接地电阻,系指在低频、电流密度不大的情况下测得的,或用稳态公式计算得出的电阻值。这与雷击时引入雷电流用的接地装置的工作状态是大不相同的。由于雷电流是
12、个非常强大的冲击波,其幅度往往大到几万甚至几十万安的数值。这样,使流过接地装置的电流密度增大,并受到由于电流冲击特性而产生电感的影响,此时接地电阻称为冲击接地电阻,也可简称冲击电阻.由于流过接地装置电流密度的增大,以致土壤中的气隙、接地极与土壤间的气层等处发生火花放电现象,这就使土壤的电阻率变小和土壤与接地极间的接触面积增大。结果,相当于加大接地极的尺寸,降低了冲击电阻值。长度较长的带形接地装置,由干电感的作用,当超过一定长度时,冲击电阻不再减少,这个极限长度称为有效长度、土壤电阻率越小,雷电流波头越短,则有效长度越短。由于各种因素的影响,引入雷电流时接地装置的冲击电阻,乃是时间的函数。接地装
13、置中雷电流增长至幅值IM的时间,是滞后于接地装置的电位达到其最大值 UM 的时间的。但在工程中已知冲击电流的幅值IM和冲击电阻 Rds的条件下,计算冲击电流通过接地极流散时的冲击电压幅值 UM = IM·Rds 。由于实际上电位与电流的最大值发生于不同时间,所以这样计算的幅值常常比实际出现的幅值大一些,是偏于安全的,因此在实际中还是适用的。# O% C5 u1 / p7 W, J' y1 ) N" P% p, u2 _' T二、接地的作用 - P3 I3 H z2 |接地的作用主要是防止人身遭受电击、设备和线路遭受
14、损坏、预防火灾和防止雷击、防止静电损害和保障电力系统正常运行。现分别说明如下。# K6 g( A8 Y* L" m3 x+ A(一)防止人身遭受电击9 1 ?" X/ b3 D. F. r! V1电击机理( 0 R9 8 J) 6 y; n+ U# l电击所产生的电击电流通过人体或动物躯体将产生病理性生理效应,例如肌肉收缩、呼吸困难、血压升高、形成心脏兴奋波、心房纤维性颤动及无心室纤维性颤动的短暂心脏停跳、心室纤维性颤动,直至死亡,所以必须采取防护措施。, T7 f: A( n # t( m. R人或家畜触及电气设备的带电部分,
15、称为直接接触。人或家畜与故障下带电的金属外壳接触,称为间接接触。直接接触及间接接触所造成的电击称为直接电击和间接电击。为了防止电击,必须先了解电击机理,然后对直接电击、间接电击以及兼有该两者电击采取适当的防护措施,以保证人、畜及设备的安全。1 ?( K# W) ?* h# l, F(1)人体阻抗的组成电击电流大小由接触电压和人体阻抗所决定。人体阻抗主要与电流路径、皮肤潮湿程度、接触电压、电流持续时间、接触面积、接触压力、温度以及频率等有关。人体阻抗的组成如图 4所示。如将两个电极接触人体的两个部分,并将电极下的皮肤去掉,则该两电极问的阻抗为人体内阻抗 Zi。皮肤上电极与皮肤下导电组织之间的阻抗
16、即为皮肤阻抗 ZPl和 ZP2 。Zi、ZP1、ZP2的矢量和为人体总阻抗 ZT。现将这些阻抗的特征说明如下:- j# D! y( R4 |1 a图4人体阻抗的组成2 L$ b- M" m% h3 X人体内阻抗Zi根据IEC测定的结果,Zi主要是电阻,只有少量电容,如图 4虚线所示,其数值主要决定于电流路径,一般与接触面积关系不大,但当接触面积小到几平方毫米数量级时,内阻抗才增大。皮肤阻抗 ZP1、ZP2 ZP1、ZP2是由半绝缘层和小的导电元件(如毛孔构成的电阻电容网络)组成,见图 4接触电压在 50V 及以下时,皮肤阻抗值随表面接触面积、温度、呼吸等显著变化;50100V 时,皮
17、肤阻抗降低很多;频率增高时,皮肤阻抗也随之降低;皮肤破损时,皮肤阻抗可忽略不计.人体总阻抗 ZTZT由电阻分量及电容分量组成。当接触电压在 500V 及以下时,ZT值主要决定于皮肤阻抗值;接触电压越高,ZT与皮肤阻抗关系越少;当皮肤破损后,ZT值接近于人体内阻抗。人体初始电阻 Ri在接触电压出现的瞬间,人体的电容还未充电,皮肤阻抗可忽略不计,这时的电阻值称为人体初始电阻。该值限制短时脉冲电流峰值。当电流路径从手到手或手到脚而且接触面积较大时,5 分布秩(即 5 的人所呈现的最小初始电阻值)Z5 可认为等于 500.( |- b4 ?8 8 a# r' z+ j) Z: z( j2)人体
18、阻抗与接触状况的关系通常划分为以下三类: 状况 1干燥或湿润的区域、干燥的皮肤、高电阻的地面,此时人体阻抗值: Q2 p- b, Z0 w" m2 g! & yZ11000 0.5Z5()8 t; a. j6 J8 m5 |4 q3 y式中:1000鞋袜和地面两者电阻的随机值, 0.5考虑了双手至双脚的双重接触情况 Z55 分布秩,即 5 的人呈现此最小阻抗值, 状况 2潮湿的区域、潮湿的皮肤、低电阻的地面,此时人体阻抗值:7 V% U J/ X3 P) A6 A |Z2 = 200 =
19、 200 +0.55()1 D6 7 / b; a8 i式中;200较低的地面电阻值,不计鞋袜的电阻, 状况 3浸入水中的情况,此时皮肤电阻、环境介质的电阻可忽略不计。在各种状况下的安全电压值,各国规定不尽相同,如表 1所示。" d) C4 c6 e; e$ |8 g4 l/ K3 E) E: _. T+ f1 b4 D: w表1 为交流电流的安全电压,IEC 规定直流(无纹波)的安全电压为:在状况 1,不大于 120V;在状况 2,不大于 60V。安全电压包括接地系统的相对地或极对地电压,或不接地和非有效接地的相间及极间电压。# _0 B+ O' |8 4 F7 p1 c%
20、 g& l! 0 j" i9 G: h+ u+ G" d, m3 z3 z9 N4 w2电击效应, ?( P G/ h! P- ( z1 K# i(1)交流电流的电击效应IEC 经过多年的试验研究,认为心室纤维性颤动是电击致死的主要原因。一个心动周期如图 5所示,由产生兴奋期 P、兴奋扩展期 R 和兴奋复原期T所组成。图5中的数字表示兴奋传播的顺序。在兴奋复原期内有一个相对较小的部份称为易损期,在易损期内,心肌纤维处于兴奋的不均匀状态,如果受到足够幅度电流的刺激,心室纤维发生颤动,如图 6中 X 点受电流刺激对心电图和血压的影响,如图 6中曲线
21、所示。此时发生心室纤维性颤动和血压降低,如电流足够大将导致死亡。# o; 7 n6 z4 . C/ Y: 7 2 当电流流过人体时,人身所察觉到的最小电流值称为感觉阈值。对于 15 100Hz 交流电流,此值为 0.5mA。人握电极能摆脱的电流最大值称为摆脱电流,对于 15100Hz 交流电流为 10mA。当流过人体的电流继续增加时,人体电流 IB和电流流过的持续时间 t 的关系如图 7所示。图7是按电流流过人体的路径从左手到双脚的效应绘制的。当电流为 500mA、时间为 100ms 时,产生心室纤维性颤动的几率为 14。图 7中的 区通常无反应性效应; 区通常无有害的生理效应; 区通常无器官
22、性损伤,但可能出现肌肉收缩和呼吸困难在心脏中形成兴奋波和传导的可逆性紊乱,包括心房纤维性颤动及短暂心脏停跳;在 区内开始出现心室纤维性颤动,到曲线 c1,几率为 5;到曲线 c2,几率为 50;曲线 c3 以外则几率超过 50。随着电流与时间的增加,可能发生心脏停跳、呼吸停止及严重烧伤。 图 7中的电流为“从左手到双脚”路径的电流,如为其它路径,按下式计算:8 J$ Q1 N( W. F3 HIB = IrefF(2)$ _# o) V& Y5 N E# e3 式中:IB流经其它路径的人体电流,mA Iref流经“从左手到双脚”的人体电流,mA F心电流系数,见表
23、 2* h0 q5 o6 x+ & & c- J5 A% ?+ c# ( S2 c; . I+ Q0 O) A( O上述的感觉阈值、摆脱阈值及图 7中的心室纤维性颤动阈值都是对 15100Hz 交流电流而言的。在工业企业和民用建筑中,有不少电气设备的使用频率超过 100Hz,例如有些电动工具和电焊机,可用到 450Hz;电疗设备大多数使用 40005000Hz;开关方式供电的设备则为 20kHz 1MHz;微波及无线电设备还有使用更高的频率的。对于这些 100Hz 以上交流电流,人体皮肤的阻抗,在数十伏数量级的接触电压下,大致与频率成反比,例如 500Hz 时皮肤阻抗,仅约为
24、50Hz 时皮肤阻抗的 110,在很多情况下,皮肤的阻抗可以忽略不计。但因为是高频电流,对人体的感觉和对心脏的影响都比 100Hz 以下交流电小。为了与 50Hz 时阈值相比,常采用频率系数 Ff 来衡量、频率系数 Ff 为频率f时产生相应生理效应的阈值电流与 50Hz 的阈值电流之比。在频率为 100Hz 以上直至 1000Hz 时,感觉阈值的频率系数和摆脱阈值的频率系数见图 8;电击持续时间长于心动周期并以纵向电流流经人体躯干时,心室纤维性颤动阈值的频率系数见图 9。电击持续时间小于心动周期时,尚无试验数据。频率在 1000Hz 以上直到 10000Hz 交流电的感觉阈值的频率系数和摆脱阈
25、值的频率系数见图 10;心室纤维性颤动阈值的频率系数,IEC 还在考虑中。频率在 10kHz 及 100Hz 之间时,阈值大致由 10mA 上升到 100mA(有效值),频率在 100kHz 以上及电流强度在数百毫安数量级时,较低频率时有针刺的感觉,频率再高则有温暖的感觉。频率在 100kHz 以上时,既没有摆脱阈值和心室纤维性颤动阈值的试验数据也没有这方面的事故报告。频率在 100kHz 以上及电流在安培数量级时,可能出现烧伤,烧伤的严重程度随电流流通的持续时间而定。. n# T* N- q5 p3 I3 S# S9 _2 o" V3 B3 : . v1 s" a'
26、; b3 G: / t& T9 C& U(2)直流电流的电击效应电流对人体的效应,例如刺激神经和肌肉,引起心房或心室纤维性颤动等,与电流大小的变化有关,特别是在接通或断开电流的时候。电流幅度不变的直流电流要产生同样的效应,要比交流电流大得多。握持直流电器,事故时较易摆脱;当电击持续时间长于心动周期时,心室纤维性颤动阈值比交流的阈值高得多。直流电流从手到双脚,通过人体躯干的电流称为纵向电流;从手到手通过人体躯干的电流称为横向电流;以双脚为正极,流过人体的电流为向上电流;以双脚为负极,流经人体的电流为向下电流。直流电流与具有相同诱发心室纤维性颤动几率的等效交流电流(有效值)之比称为
27、直流交流等效系数。0 f7 H/ a0 d2 q! # h6 h直流电流的持续时间和电流幅值的关系见图 11。图中区通常无反应性效应; 区通常无有害的生理效应;区通常预期无器官损伤,随电流幅值和时间而增加其严重程度,可能出现心脏中兴奋波的形成和传导的可逆性紊乱; 区可能出现心室纤维性颤动,随电流幅值和时间增加,除 区的效应外,预计会发生严重烧伤等病理生理效应。关于心室纤维性颤动,该图所示为电流从左手到双脚,且为向上电流的效应。如为向下电流,应将电流乘以 2 的系数进行换算。当电流从手到手,不大可能产生心室纤维性颤动。在该图中,当电流流过的持续时间小于 500ms 时,尚无 和 区分界线的资料。
28、 直流电流的感觉阈值取决于接触面积、接触状态(干湿度、压力、温度)、电流流过的持续时间和各自的生理特征等,与交流电不同的是:当电流以感觉阈值强度流过人体时,只是在接通和断开电流时有感觉,其它时间没有感觉。在与测定交流电流感觉阈值相等条件下,直流电流的感觉阈值约为 2mA。直流的摆脱阈值与交流不同,约 300mA 以下的直流电流没有可以确定的摆脱阈值,只有在接通和断开电流时,才能引起疼痛性和痉挛似的肌肉收缩。当电流大干 300mA 时,可能摆脱不了,或仅在电击持续时间达几秒或几分种后才有可能摆脱不了。通过人体的电流约为 30mA 时,人体四肢有暖热感觉。流经人体的电流为 300mA 及以下横向电
29、流持续几分钟时,随着时间和电流增加,可能产生可逆性的心节律障碍。电流伤痕、烧伤、眩晕、有时失去知觉,超过 300mA 时,经常出现失去知觉的情况。(3)特殊波形电流的电击效应(3)特殊波形电流的电击效应特殊波形电流在工业企业和民用建筑所用的电气设备中,有以下几种,对于人体的电击效应分别说明如下: 具有直流分量的交流电流的效应标准交流和直流的图形如图 12(a)及(b)所示、具有直流分量的交流电流的波形如图 12(c)所示,常用的半波整流及全波整流的波形如图 13(a)及(b)所示。9 D# h j, i6 y/ J8 P6 b7 a" b
30、?4 r: p' D6 t) s3 t经过整流后,如图 13中所示的波形交流电的感觉阈值和摆脱阈值取决于人体与电极的接触面积,接触状态(干湿度、压力、温度)和各自的生理特征,其阈值尚在 IEC 的考虑中。 在讨论心室纤维性颤动阈值时,必须区别下列的电流量值:Irms 为合成波形电流的有效值;Ip 为合成波形电流的峰值;Ipp 为合成波形电流的峰间值;Iev 为产生与所涉及波形在心室纤维性颤动方向有相同危险的正弦电流的有效值,该值用来代替图 7及图 11中的人体电流 IB 以估计心室纤维性颤动的危险。 当电击持续时间大于 1.5 倍心动周期时, Iev = Ipp2# W& R5
31、 F; $ Z4 e: x, 当电击持续时间小于 0.75 倍心动周期时,! # / i1 i" J4 b6 S, A P' Y4 lIev = Ip21 h5 i, H% ( L. c9 n2 k当交流对直流比越小,上述关系越不能适用。对于持续时间小于 0.1s 的直流电击,其阈值等于图 11中相应的电流值。当电击持续时间在 0.75 倍到 1.5 倍心动周期时,量值参数由峰值转变为峰间值,转变的过程 IEC 认为尚需进一步研究。如图 13 所示的半波及全波整流的波形,由于电流峰值等于其峰间值,当电击持续时间大干 1.5 倍心动周期及小于 0.75 倍
32、心动周期时,Iev 分别为 Ipp(22)= Ip(22) 及 Ipp2 = Ip2 。由图 13可见,半波整流时 Irms = Ip2,全波整流时为 Ip2。因此可得半波整流时 Iev值分别为 Irms2 及 2Irms;全波整流时,Iev 值分别为 Irms2 及 Irms 。 具有相位控制的交流电流的效应一般的具有相应控制的交流电流的波形分为对称控制和不对称控制两种,分别示于图 14 的(a)和(b)。. e' # C$ A / I9 * D' b7 y2 i/ q4 |这种波形的电流在产生感觉和阻止摆脱方面的效应大致上与具有相同 Ip 的纯交流电流
33、相同。相位控制角在 120° 以上时,峰值随着电流流通持续时间的减少而增加。对于对称控制:当电击持续时间大于 1.5 倍心动周期时。Iev 为具有与所涉及的相应波形电流相同的有效值;当电击持续时间小于 0.75 倍心动周期时,Iev 为具有与所涉及的相应波形电流相同峰值电流的有效值,如相位控制角在 120°以上,心室纤维性颤动阈值将升高;当电击时间在 0.75 倍到 1.5 倍心动周期时,Iev 由峰值转变为有效值,转变的过程,IEC 认为尚待进一步研究。对于不对称控制,其所产生的电流,也可能有直流分量。当电击持续时间大干 1.5 倍心动周期时,IEC 尚在考虑中;电击持续
34、时间小于 0.75 倍心动周期时,Iev 为具有与所涉及的相应波形电流相同峰值电流的有效值。相位控制角在 120° 以上时,心室纤维性颤动阈值将升高。具有多周期控制的交流电流的效应具有多周期控制的交流电流的波形见图 15所示。ts 为传导时间。tp 为不传导时问,tstp 为工作周期。p = ts(tstp)为电力控制程度。I1rms 为电流传导期间电流的有效值,即Ip2;I2rms为工作周期内电流有效值,即 I1rmsp 。感觉阈值及摆脱阈值,IEC 尚在考虑中。心室纤维性颤动阈值,IEC 在幼猪身上进行试验,试验结果如图 16所示,对于人体,可作参考。当电击持续时间大于 1.5
35、倍心动周期时,阈值取决于 p 。p接近 1 时,Iev为与同一持续时间的正弦交流电流相同的有效值。p接近于 0.1 时 I1rms 与持续时间短于 0.75 倍心动周期的交流电流的阈值相同。 当 p在 10.1 的中间值时,如图 16所示,流过人体的电流逐渐增大,致使纤维 I1rms 与同一持续时间的正弦交流电流的有效值相同。- L% L3 E# U; E5 J! X. " R& T9 m D4 G$ w 短持续时间单向单脉冲电流的效应内装电子元件的电器绝缘损坏或直接接触其带电体时可形成矩形或正弦形脉冲,如图 17(a)、(b)所示;电容器放电的短持续时
36、间单向脉冲如图 17(c)所示。这些脉冲当其持续时间为 10ms 及以上时,对人体的效应与图 7 相同;对于 0.lms10ms 持续时间的脉冲,其效应按下列能量率来表征。心室纤维性颤动能量率 Fe :在电流路径、心脏时相(心脏跳动的幅值与时间的关系)等给定条件下,引起一定几率的心室纤维性颤动的短持续时间单向脉冲的最小 I2t值,以积分形式表示为8 p! 9 ; B6 m; D1 ; xFe =0tii2dt5 D+ o& O2 M" R0 Q* + n. JFe乘以人体电阻得出脉冲期间耗散在人体的能量。心室纤维性颤动电荷率 Fq :在给定的电流路径、心脏时相等条件下,引起一
37、定几率的心室纤维性颤动短持续时间单向脉冲最小 It 值,以积分形式表示为8 5 v7 n+ v5 0 E4 & ?8 l7 FFq =0tiidt2 , S/ _4 s. c7 O现以电容器放电为例。电容器由放电开始到放电电流降至其峰值的 5 的时间间隔为电容器放电的电击持续时间 t1。按指数衰减降到起初幅值 1e = 0.3679 倍所需的时间为时间常数T 。当 ti = 3T时,所有脉冲能量几乎耗尽。电容器放电的感觉阈值和痛苦阈值取决于电极的形式、脉冲的电荷及其电流峰值。图 18为以干手执大电极的人作为放电对象的感觉阈值及痛苦阈值痛苦阔值为人感到有蜜蜂蜇或纸烟烧似的痛苦。以能量率
38、Fe表示的痛苦阈值对于通过手脚的电流路径及大接触面积来说为(50100)×10-6A2s 数量级(在图 18中,如以面对图的右侧为东,则电容 C 按指向东北的对角线计量,能量W按指向西北的对角钱计量。如已知充电电压为 100V,电容为 100nF,则由该两线的交点 K,可读出脉冲的电荷为 10C,能量为 0.5mJ)。心室纤维性颤动阈值取决于脉冲电流的形式、持续时间及幅度、脉冲开始时的心脏时相、通过人体的电流路径及人的生理特征。 IEC 曾在动物身上做过试验,其结果是:对于短持续时间的脉冲,心室纤维性颤动一般仅在脉冲落在心动周期易损时间内发生;对于电击持续时间小于 10ms 的单向脉
39、冲,心室纤维性颤动的发生由 Fq或 Fe 所决定。图 19示出心室纤维性颤动的阈值,对于 50 的纤维性颤动几率,Fq为 0.005As ,Fe 则由脉冲持续时间 t1 = 4ms 时的 0.01A2s 上升到 t1 = 1ms 时的 0.02A2s 。该曲线给出路径以左手到双脚流过的电流的心室纤维性颤动危险几率对于其它电流途径,则乘以表2的心电流系数 F 。图中 c1 曲线以下,无纤维性出动;c1 曲线以上直到曲线 c2 以下,具有较低的心室纤维性颤动危险,几率直到 5;c2 曲线以上直到 c3 曲线以下,具有中等纤维性颤动危险,几率直到 50 ;c3 曲线以上,具有高纤维性颤动危险,大于
40、50 几率。对于各种形式脉冲的纤维性颤动能量率 Fe可由下列公式求出:对于矩形脉冲:) 8 k5 / Q$ J$ O* Fe IDC2ti0 M& r- R) S! , S" D# W' E对于正弦形脉冲:- s$ T3 F" W1 c$ m3 vFe (IAC(p)22)ti IAC(rms)2ti. R1 c! Z9 E9 S5 P! z对于时间常数为T的电容放电:. r1 p' A* j* B5 Z; x' kFe IC(p)2 (T2) IC(rms)2ti3 9 T, b- * Q, M, W) 以上各式的电流参量可由图17看出:I
41、DC为矩形脉冲电流的量值,IAC(p)为正弦形脉冲电流的峰值,IAC(rms)为正弦形脉冲电流的有效值,IC(p)为电容放电的峰值,IC(rms)为持续时间为 3T 的电容放电电流的有效值。具有相同心室纤维性颤动能量率及相同电击持续时间的矩形脉冲、正弦形脉冲及电容放电见图 20。由Fe定义可写出,电容放电的 Fe1为/ K o- 8 b) a- C" h9 xFe1 IC(p)20e-2tT IC(p)2(T2), 4 V- b4 P' Z, a; w矩形脉冲及正弦形脉冲的 Fe2及 Fe3为9 6 v3 E* H( V1 i+ OFe2 IDC2 3T
42、3 I. k 2 N. 4 1 Z, r% IFe3 IC(rms)2 3T% S+ Z3 H1 s4 i' x8 _因为 Fe1 Fe2 Fe3 ,则1 x. 2 X2 W( X8 U# ZIC(p)2(T2) IDC2 3T IC(rms)2 3T( o4 Q+ F0 p , Q2 a1 j即IC(p)(16) IC(rms) IDC: u8 Y6 B9 ! + e; |" E% o根据上式将 IDC 及 IC(rms) 转换为相应的 IC(p)(16) 值,则可由转换而得的相应 IC(p)值在图 19中找到矩形脉冲和正弦形脉冲
43、的心室纤维性颤动阈值。7 & T( U' F" U* X& 4 c1 s9 T# P& J$ W- b3 u( N& o3直接电击的防护措施, v& f, D3 ?6 P7 m/ Q) |直接电击保护又称正常工作的电击保护,也称为基本保护,主要是防止直接接触到带电体,一般采取以下措施。(1)将带电体绝缘带电部分完全用绝缘覆盖。该绝缘的类型必须符合相应电气设备的标准,且只能在遭到机械破坏后才能除去。绝缘能力必须达到长期耐受在运行中受到的机械、化学、电及热应力的要求。一般的油漆、清漆、喷漆都不符合要求。在安装过程中所用的绝缘也必须经过试验,
44、证实合乎要求后才能使用。(2)用遥栏和外护物防护外护物一般为电气设备的外壳,是在任何方向都能起直接接触保护作用的部件。遮栏则只对任何经常接近的方向起直接接触保护作用。两者的防护要求如下: 最低的防护要求在电气操作区内,防护等级为 IP2X ,顶部则为 IP4X。在电气操作区内,如可同时触及的带电部分没有电位差时,防护等级可为 IP1X。在封闭的电气操作区内可不设防护。 强度及花定性遮拦或外护物应紧固在其所在位置,它的材料、尺寸和安装方法必须具有足够的稳定性和耐久性,并可承受在正常使用中可能出现的应力和应变。 开启成拆卸必须使用钥匙或工具,并设置联锁装置,即当开启和拆卸遮栏或外护物时,将其中可能
45、偶然触及的所有带电部分的电源自动切断,直到遮栏或外护物复位后才能恢复电源。如遮栏或外护物中有电容器、电缆系统等储能设备并可能导致危险时,不但要在规定时间内泄放能量,而且还必须采用与上述要求相同的联锁装置。也可在带电部分与遮栏、外护物之间插入隔离网罩,当开启或拆卸遮栏或外护物时不会触及带电部分。网罩可以固定,也可在遮栏、外护物除去时自动滑入。网罩防护等级至少为 IP2X,且只有用钥匙和工具才能移开。如需更换灯泡、熔断器而在外护物和遮栏上留有较大的孔洞时,则必须采取适当措施防止人、畜无意识地触及带电部分,而且还须设置明显的标志,警告通过孔洞触及带电部分会发生危险。(3)用阻挡物防护阻挡物只能防护与
46、带电部分无意识接触,但不能防护人们有意识接触。例如用保护遮栏、栏杆或隔板可以防止人体无意识接近带电部分又如用网罩或熔断器的保护手柄,可以防止在操作电气设备时无意识触及带电部分。阻挡物可不用钥匙或工具拆除,但必须固定以免无意识地移开。& U" o; E8 m' x8 Z0 f2 q% 9 w(4)置于伸臂范围以外伸臂范围如图21所示。将带电部分置于伸臂范围以外可以防止无意识地触及。不同电位而能同时触及的部分严禁放在伸臂范围内。如两部分相距不到 2.5m,则认为是能够同时触及的。当人们的正常活动范围 S 由一个防护等级低于 IP2X 的阻挡物(如栏杆)限制时,则规定的距离
47、应从阻挡物算起。在正常工作时须手持大或长的导电物体的地方,计算距离时须计及该物体的外形尺寸。(5)采用 RCD(剩馀电流保护装置,也称漏电并关)作为附加保护RCD 不能作为直接电击的唯一保护设备,只能作为附加保护,也就是作为其它保护失效或使用者疏忽时的附加电击保护。剩馀电流动作整定值一般采用 30mA。6 V: Z6 L; f! q' i* A( C% K* m" A/ 8 X Q% q T4间接电击的防护措施( s+ 8 b) 7 Q8 j' m间接电击保护又称故障下的电击保护,也称附加保护,一般采用以下措施:(1)自动切
48、听电源当故障时,最大电击电流的持续时间超过允许范围时,自动切断电源(IT 系统的第一次故障除外),防止电击电流造成有害的生理效应采用这种方法的前提是:电气设备的外露导电部分必须按系统接地制式与保护线相连,同时还宜进行主等电位联结。自动切断电源法可以最大限度地利用原有的过电流保护设备,且方法简单、投资最省,是一种常用的措施。(2)使用级设备或采用相当绝缘的保护级设备既有基本绝缘也有双重绝缘或加强绝缘;不考虑保护接地方法;设备内导电部分严禁与保护线连接。该类设备的绝缘外护物必须能承受可能发生的机械、电或热应力,一般的油漆、清漆及类似物料的涂层不符合要求。绝缘外护物上严禁有任何非绝缘材料制作的螺栓,
49、以免破坏外护物的绝缘。(3)采用非导电场所在非导电场所内,严禁有保护线,也不采取接地措施,因此可采用 0 级设备(这种设备只有基本绝缘,没有保护接地手段)。非导电场所应具有绝缘的地板和墙(用于标称电压不超过 500V 的设备,其绝缘电阻不小于 50k;如标称电压超过 500V,则为 100k),其防护措施如下: 外露导电部分之间、外露导电部分与外部导电部分之间的距离不小于 2m;如在伸臂范围以外,则为 1.25m。 如达不到上述距离,则在两导电部分之间设置绝缘阻挡物,使越过阻挡物的距离不小于 2m。 将外部导电部分绝缘起来,绝缘物要有足够的机械强度并能耐受 2000V 电压,且在正常情况下,泄
50、漏电流不大于1mA。上述布置必须是永久性的,即使使用手携式或移动式设备也必须能满足上述要求;另外,还应采取措施使墙和地板不因受潮而失去原有电阻值,同时外部导电部分也不能从外部引入电位。(4)不接地的局部等电位联结凡是能同时触及的外露导电部分和外部导电部分采用不与大地相连的等电位联结,使其电位近似相等,以免发生电击。局部等电位联结系统严禁通过外露导电部分或外部导电部分与大地接触,如不能满足,必须采用自动切断电源措施。为了防止进入等电位场所的人遭受危险的电位差,在和大地绝缘的导电地板与不接地的等电位联结系统连接的地方,必须采取措施减少电位差。(5)电气隔离将回路进行电气隔离是为了防止触及绝缘破坏的
51、外露导电部分产生电击电流,一般采取以下措施: 该回路必须由隔离变压器或有多个等效隔离绕组的发电机供电,电源设备必须采用级设备或与其相当的绝缘。如该电源设备供电给几个电气设备,则这些电气设备的外露导电部分严禁与电源设备的金属外壳相连。 该回路电压不能超过 500V,其带电部分严禁与其它回路或大地相连,并须注意与大地之间的绝缘。继电器、接触器、辅助开关等电气设备的带电部分与其它回路的任何部分之间也需要这种电气隔离。 不同回路应分开布线,如无法分开,则必须采用不带金属外皮的多芯电缆或将绝缘导线敷设在绝缘的管路或线槽中。这些电缆或导线的额定电压不低于可能出现的最高电压,旦每条回路有过电流保护。 被隔离
52、回路的外露导电部分必须采用绝缘的不接地等电位联结,该连接线严禁与其它回路的保护线或外露导电部分相连接,也不与外部导电部分连接。插座必须有保护插孔,其触头上必须连接到等电位联结系统。软电缆也必须有一根保护芯线作等电位联结用(供电给级设备的电缆除外)。 如出现影响两个外露导电部分的故障,而这两部分又接至不同相的导线时,则必须有一个保护装置能满足自动切断电源的要求。* T# L2 A) P! w5防止直接和间接电击两者的措施 * s3 s1 ! X- R6 z5 U h# Y兼有防止直接和间接电击的保护,也称为正常工作及故障情况下两者的电击保护,可采取以下措施。(1)安全电压采
53、用的标称电压不超过安全电压 50V,如果引出中性残,中性线的绝缘与相线相同。(2)由安全电源供电安全电源有以下几种: 安全隔离变压器,其一、二次绕组间最好用接地屏蔽隔离。 电化电源,如蓄电池。 与较高电压回路无关的其它电源,如柴油发电机。 按标准制造的电子装置,保证内部故障时,端子电压不超过 50V,或端子电压可能超过 50V,但电能量很小,人一接触端子,电压立即降到 50V 以下。(3)回路配置 安全电压的带电部分严禁与大地、其它回路的带电部分或保护线相连。 安全电压回路的导线与其它回路导线隔离,该隔离不低于安全变压器输入和输出线圈间的绝缘强度。如无法隔离,安全电压回路的导线必须在基本绝缘外
54、附加一个密封的非金属护套、电压不同的回路的导线必须用接地的金属屏蔽或金属护套分开。如果安全电压回路的导线与其它电压回路的导线在同一电缆或组合导线内,则安全电压回路的导线必须单独或集中地按最高电压绝缘处理。 安全电压的插头不能插入其它电压的插座内,安全电压的插座也不能被其它电源的插头插入,且必须有保护触头。 当标准电压超过 25V 时,正常工作的电击保护必须采用IP2X的遮栏或外护物,或采用包以耐压 500V 历时 1 分钟不击穿的绝缘。' n. i' 2 9 X$ c1 M4 Z* n 6防止电击的接地方法! # T1 3 H4 q就是将电气设备在正常情况下不带电的金属部分与接
55、地极之间作良好的金属连接,以保护人体的安全。从图 22可以看出,当电气设备某处的绝缘损坏时外壳就带电。由于电源中性点接地,即使设备不接地,因线路与大地间存在电容,或者线路上某处绝缘不好,如果人体触及此绝缘损坏的电气设备外壳,则电流就经人体而成通路,这样就遭受了电击的危害。图 23表示有接地装置的电气设备。当绝缘损坏、外壳带电时,接地电流 Id 将同时沿着接地极和人体两条通路流过。流过每一条通路的电流值将与其电阻的大小成反比,电流分别为 Id 及 IB 。即/ W; t d( g" y- y* Y. gIBId´ RdRB(3)) Z- E1
56、c* u' r2 u( o" Z6 l式中:Id´沿接地极流过的电流IB 流经人体的电流RB 人体的电阻Rd 接地极的接地电阻从式(3)中可以看出,接地极电阻越小,流经人体的电流也就越小。通常人体的电阻比接地极电阻大数百倍,所以流经人体的电流也就比流经接地极的电流小数百倍。当接地电阻极小时,流经人体的电流几乎等于零,也就是 IB 0,Id´ Id。因而,人体就能避免触电的危险。因此,不论施工或运行时,在一年中的任何季节,均应保证接地电阻不大于设计或规程中所规定的接地电阻值,以免发生电击危险。 E2 B2 S7 j$
57、 i: i" D B L" Q(二)保障电气系统正常运行: E( 5 T- Z, Y % D电力系统接地一般为中性点接地。中性点的接地电阻很小,因此中性点与地间的电位接近于零。当相线碰壳或接地时,其它两相对地电压,在中性点绝缘系统中将升高为相电压的 3 倍;而在中性点接地的系统中则接近于相电压,有利于系统稳定运行,防止系统振荡,而且系统中的电气设备和线路只要按相电压考虑其绝缘水平,降低了电气设备的制造成本和线路的建设费用。由于有了中性点的接地线,也可保证继电保护的可靠性。通信系统一般采用正极接地,可防止杂音窜
58、入和保证通信设备正常运行。电子线路需要稳定的参考点,才能正常运行,因此也要接地。" S4 u: e" N 6 f+ ) P(三)防止雷击和静电的危害 Y% j% Q2 |" p- - I雷击时产生静电感应和电磁感应,物料在生产和运输中因摩擦而引起的静电,都可能造成电击或火灾危险。直接遭受雷击的危害,比之于感应雷那就更大了,而且发生的机会亦更多。所以,为了防止直击雷,必须装设防雷装置。所有防雷装置和防止静电危险的措施,最主要的方法是设置接地装置。现在将其作用分述如下:4 n; G: l' o; h% t( s9 L
59、+ % j$ f9 7 P7 L1 v / H6 T + 1直击雷 天气炎热时,天空中往往存在着大量雷云。比如当带有正电荷的雷云飘近地面时,就在附近地面特别是突出地面的高大建筑物上感应有负电荷。当地面和建筑物上积聚的电荷密度很高,而雷云又十分接近地面或建筑物时,就会产生强烈的放电现象。这就是通常所谓雷击。雷击的破坏作用是很大的。它不仅要击毙人畜,烧焦或劈倒树木,而且还破坏建筑物,甚至引起火灾和爆炸。为了防止直击雷,往往在建筑物的顶部装设避雷针或避雷带。避雷针或避雷带都是经引下线连接到接地装置的,与大地间有良好连接。这样,当建筑物上空附近出现有雷云时,地面上感应产生的相反的电荷,就会沿接地装置、引下线和避雷针或避雷带跑进大气里,与雷云中的电荷中和,从而避免发生大规模的强烈放电现象。这就防止了雷击的发生。根据采用防雷装置的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《母亲家活动策划书》课件
- 2024年11月社区护理试题+答案(附解析)
- 10月高级养老护理员练习题库及答案(附解析)
- 装潢设计在数码产品包装的未来感考核试卷
- 电子节能照明设备环保认证考核试卷
- 教育技术学的理论基础
- 台州网络安全运维招聘注意事项信息
- 各国学前教育体系比较研究
- 《复习指南:出师表》课件
- 电力设备故障预测分析考核试卷
- 医院体检电子表格
- 国家义务教育质量监测初中美术试题
- 农村现代农业示范基地建设项目风险评估报告
- 呵护心理健康 安心快乐成长 课件(共18张PPT) 小学生主题班会
- 原发性肝癌英文版培训课件
- 执业医师血尿相关考核试题
- 学生自行离校的协议书
- 莫高窟经典简介
- 大概念教学:素养导向的单元整体设计
- 工余安健环培训
- 卫生部手术分级目录2011年版四级手术部分
评论
0/150
提交评论