分式华东师大版_第1页
分式华东师大版_第2页
分式华东师大版_第3页
分式华东师大版_第4页
分式华东师大版_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 解:方程两边分别通分, /口 x 7x 一4 x 6x -3 碍 - = - (x 4)( x 7) (x 3)( x 6)分式 一. 本周教学内容: 分式 这一章的内容繁杂、零散,因此首先要弄清重点、难点是什么。 二. 重点、难点: 本章重点是分式概念,分式根本性质及其应用,约分、通分、加、减、乘、除、乘方运算,繁分式化简, 解分式方程,解含字母系数方程,解方程中的换元思想。 难点是异分母分式加减及混合运算的准确性,解分式方程须检验的道理。 这一讲我们对可化为一元一次方程的分式方程和零指数藉与负整指数藉两局部内容进行分析。 例1.解方程=6 x 1 X -1 X - 1 解:方程两边同乘以

2、(x+1)(x 1),得 2(x -1) +3(x+1) =6, 5x =5 x =1 经检验x=1是增根,原方程无解。 13 10 4 例2.解方程- x -4 13 10 解: - - x -4 x -3 x3 x -5 x -1 4 1 x -5 x -1 3x 1 (x-4)(x-3) _ 3x 1 =(x-5)(x 1) 1 1 (3x (x 4)(x 一3) 一(x -5)(x -1) 一 0 1 1 3x +1 _或(x _4)(x 3) (x 5)(x 1) 0 1 ,、 x = -甘或(x -4)(x -3) = (x - 5)(x T) 2 一一 2 - - x -7x 1

3、2 = x 6x 5 x =7 1 , _ 经检验:x = -1和x = 7是原方程的根。 3 例3. 解方程 解: 原方程变形为 1 - - +1=2- 2 * + x2 x -2 一 x2 2x 1 2 2 . x x - 2 = x 2x1 -x = -3 经检验:x = -3是原方程的根。 1 a 1 b 例5.解关于x的万程1 +- =1 +-(ab) a x b x 解:方程两边都乘以最简公分母 abx, 得 bx a2b = ax ab2 2 2 . . (a -b)x =a b -ab -ab, .a-b0 a2b - ab2 x = - a -b x = ab 注意:不要求检

4、验这类简单的含字母系数的分式方程。 即 (x 4)( x 7) (x 3)( x 6) 所以(x 3)(x 6) =(x 4)(x 7) 解得 x = 5 经检验x =-毗原方程的根。 原方程的根是x = -5。 例4.解方程x:+x3+1 x x -2 一 2 一 . 2x2 4x1 2 - . x 2x 1 x a2 x -1 2a2 -2 x2 - 1 例6.解关于x的方程:三也+ D- x -1 x 1 解:方程两边都乘以(x+1 ) (x 1),得 2 2 2 4ax (x a2)(x -1) =(x a2)(x 1) - (2a- 2) 整理得-4ax - 2x - 2a2x =

5、2a22 即(a 1)2x =(a 1)(a 1) a 1 当a乒1时,a-1乒0, x = a -1 把x = =代入最简公分母 a1 (x +1)(x -1)中检验: a 1 (a -1 a 1 2a 1)( .-1)=. a -1 a -1 2 _ 4a 2 a-1 (a-1) 显然, 当a=0时, (a -1) =0,即最简公分母为0 也就是说当a = 0时,x = - = -1是增根,舍去。 a -1 所以,当a=0时,原方程无解; a 1 当a乒1且a乒0时,方程有唯一解x = - ; a -1 当a=1 时,.(a 1)2 =0, (a+1)(a1)=0 方程有无穷多解,x可以取

6、不等于土 1的任意数。 综上所述: a 1 当a乒1且a乒0时,方程有唯一解x = - ; a 1 当a=0时,方程无解。 当a=1时,方程有无穷多解,方程的解为x 1的任意实数。 例7.甲、乙两地相距19km,某人从甲地去乙地,先步行 7km,然后改骑自行车,共用了 2小时到达乙地, 这个人骑自行车的速度是步行速度的 4倍,求步行的速度和骑自行车的速度。 解:设这人步行速度为 x km/h,骑自行车速度为 4x km/h, 7 197 依题意得. - = 2 x 4x 解得x = 5 经检验,x=5是所列方程的解。 当x=5时,4x=20。 答:步行速度为5km/h,骑自行车的速度为 20k

7、m/h。 例8.某项工程限期完成,甲队独做正好按期完成,乙队独做那么要误期三天,现两队合做 2天后,余下的工程 再由乙队独做,也正好在限期内完成,问该工程限期是多少大? 、 , 一 . . 1 . 1 解:设该工程限期为 x天,那么甲队的工作效率为 ,乙队的工作效率为 , x x 3 依题意列出方程 2(- -) (x -2)- = 1 x x 3 x 3 整理得,2 =1 x x 3 2 两边都乘以x(x+3),得2(x+3)+x =x(x十3) 解得x = 6, 经检验,x=6是原方程的根。 答:该工程限期是6天。 例9.计算: _2_ _0_ 1 _2 (1) (-10)2 +2 X 1

8、0-3X (一广-10 10 (2) 252m + (I)1* 5 解: (1) (10)2 +2 X 100 3X (上广-10 10 = 100 十2X 1-3X 102 -1- 102 1 =100 2 -300 - 100 =102 -300-001 =19801 (2) 252m - (1)1m 5 =(52)赤士(53国 _ 5m 52 m 4m-(2m -4) 2 m 1 -5 - 5 n 1 一一 . a = (a乒0, n是正整效) 1 n=a (a乒0, n是正整效) a (1)- =an (a乒0, n是正整数) a 这三个结论在解题过程中可直接应用。 例10. 一个氧原

9、子约重2.657 X 10工3克,20个氧原子共重多少克? 解:2657X 10事 X 20 = 2.657X 20X 10事=5314 X 103 = 5314 X 10X 10事=5314 X 102(克) 答:20个氧原子共重5314 X 10&克。 例11.已矢口x+x=a,求x2+x的值。 解:x + x=a 1 x = a (x+1)2 = a2, 即 x2 + 二一2 = a2 x2 二=a2 2 x 即 x2 x2 = a2 2 【模拟试题】 1. 填空题: 4 (1) - 万程 _ =1的解是 。 x 1 1 x . 1 (2) 当x=- 时,分式 的值等于 一。 5

10、 x 2 (3) 假设分式方程2(x-a) = 一2的解为x=3,那么a的值为 _ 。 a( x - 1) 5 .x - 8 k (4) 假设关于x的方程 一 - 一 =8有增根,贝U k的值是 (5) =0的根是 。 x -12 7 1 _1 0 (6) (2尸+(J!) =。 (7) 假设 32=1,那么 x=。 (8) 去年我国新增加就业人数 7510000人,将这个数用科学记数法表示为 人。 2. 计算: (1) (一1)2 +(-2)3 + (-2尸 2 (2) (a疽 x (a3)2 (3) ()2 2 X 2+8。+(1)空+() 2 3 8 3 3. 假设 3x +3 =2,求

11、 9x +9二的值。 4.解以下关于x的方程。 2 3 4 r = - 2 2 2 x x x x x -1 x2 -2 x2 -8x 7 5. 一=t,求出用a、b、c、d、t表示x的式子。 cx d 6.解应用题:(列方程) (1) 甲骑自行车从 A出发去往距A 60km的B地,2个半小时后,乙骑摩托车也从 A出发,到达B地10 分钟后,甲才到达,乙的速度是甲的速度的 5倍,求乙的速度。 (2) 甲、乙两个工程队合做一项工程,两队合作 2天后,由乙队单独做 1天就可全部完成,乙队单独 . 3 . 做全部工程所需大数是甲队单独做所需大数的 一倍,求甲、乙两队单独做各需多少大?(2) (4) 1 -x 6 1 x x2 1 - x 7 1 -x 3 2 1 一 x2 1 2x x2 5 1 -2x x2 7 (2) -a6 (3) 3. 2 4. 解以下关于 经检验 (2) x的方程 x= - 1是增根, 7 4 1.填空题: (1) 5 (2) 3 (5) x - -1 (6) 1 (7) (8) 2 2.计算: (3) 5 3 7.51 X 106 (4) 1 (3) (4) =0 3 dt 7 b 5. x = - a -ct 6. 解应用题:(列方程) (1)设甲速为x km/时 乙速为5x km/时 60 1 60 1 2 x 2 5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论