版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、环境一经济系统的投入产出分析一、概论投入产出分析技术是美国经济学家瓦西里里昂惕夫(W. Leontief) 丁1936年发明的一种科学的经济分析方法。投入产出分析技术利用现代数学方法, 分析国民经济各部分之间在生产数量上的互相依存关系,用丁预测及平衡再生 产的综合比例,有时称为部门联系平衡分析。环境一经济系统的投入产出分析是把自然环境资源、能源和生产排出的废 弃物作为经济活动的投入物和产出物,并利用能量与物质包定律和生态经济学 的原理,分析改善环境质量带来的效益与支付的费用以及经济发展对环境的影 响。20世纪70年代以来,环境一经济系统的投入产出分析应用迅速发展,已 成为目前分析和预测经济发展
2、与环境保护协调平衡的一种有效手段。二、基本原理1、概述(1)投入产出分析是对经济系统各部门间的数量依存关系进行研究,以确 定国民经济各部门错综复杂的联系和在生产的重要比例关系的方法和技术。其 中:投入是指生产过程中消耗的原材料、燃料、动力和劳动;产出是指从事经 济活动的结果及产品的分配去向,使用方式和数量。(2)投入产出分析的基础是投入产出模型或投入产出表,其是一种特殊的 线性模型,模拟了某地区或某企业各生产部门之间的相互关系,是生产部门对 社会最终需要量变化的反映。(3)在现代经济活动中,各生产部门之间存在着复杂而密切的联系,并且 整个经济系统是处丁平衡状态的。其中经济系统中任一部门发生变化
3、,都将引 起其它部门的供求变化,这种连锁反应,结果是破坏原有的平衡。投入产出分 析就是依照经济按比例发展的客观规律,描述经济系统中各部门的平衡关系。(4)里昂惕夫(美国经济学家)在上世纪30年代提出了投入产出模型, 其将各种经济流归结在一个表中,为某一国家和地区的整个经济活动提供了一 个简明而乂系统的结构关系一投入产出表,奠定了投入产出模型的方法论基础。2、投入产出表的结构投入产出表主要是中间产品交流表,后来发展为直接消耗系数表和完全消 耗系数表。表中各部门的相互关系:若用物理量表示,则形成实物型投入产出表;实物表若用货币价值表示,则形成价值型投入产出表。币值表(1)中间产品交流表(简化的价值
4、投入产出模型)表1中间产品交流表的结构生广要素 产产出 的投入 的分配生中问广品(Xij )买进的部门jXiXi2.Xin最终产品V、总产出Xi物资的消耗卖 出的 部门iXijX2jXnjX11X12- XinX21X22 -X2nXn1Xn2 ,Xnny1V2(n)VnX1X2Xn新创造的价值(Vj)V1V2 Vn( m)(w)总投入(Xj)X1X2.XnX中间产品交流表是投入产出表的主体,它将国民经济分为若干部门,以货币 或实物反映各部门产品的分配运动过程和价值形成过程。a、 主要指标其中表中纵栏的主要指标有物资消耗和新创造价值两项:1物资消耗包括产品生产过程中直接性的生产消耗(如原料、能
5、源等)和 间接性的消耗(如生产管理、劳动保护、大小设备修理的物质消耗);2新创造价值包括劳动报酬和社会纯收入,是一定时期内物质生产部门新 创造的物质财富,反映了国民收入的初次分配情况。表中横栏的主要指标有中 间产品和最终产品两项;3中间产品指在产品生产过程中,所消耗的产品,它的总量与物资消耗总 量相等,它和纵栏第一项指标物资消耗物构成各部门在生产过程中的中间产品 相互交流表,届丁产品价值的转移部分,称为投入产出表的第I象限;它反映 国民经济各部门间的生产技术经济联系,是投入产出表的基本部分。4最终产品是指供最终使用的那部分社会产品,包括消耗积累和出口。b、 表式构成根据表1的横行方向的产品分配
6、(物质使用)和纵列方向的价值形成两个 特点,把其分为四个象限。第一象限是表的基本部分,是中间产品的交流,即各部门在应生产过程中 产品的互相交流,其中xj代表中间产品由i总门卖出,并被j部门买进作为原 料投入生产中,这部分届丁产品价值的转移部分,因此,第一象限反映了国民 经济各部门之间的生产技术经济联系。第二象限是第一象限在横行方向上的延伸,是各种产品的最终需求丫,即i部门产出的最终产品,供人们消费、出口、投资或资金积累、国家征用等, 这部分最终产品的收入,接近丁国民经济的总收入。第三象限是投入劳动力所创造的新价值V ,它在生产过程中经物化后进入 最终产品。第四象限反映一部分国民收入的再分配过程
7、以及国民经济系统中非生产领 域的行政机关,事业单位和工作人员的收入分配,它所体现的经济关系十分复 杂,一般不予讨论。此外,在平衡状态下,总投入X(表示j生产部门的总产品价值)和总产出X (表小i生广部门的总广品)相等。c、价值表的几个平衡关系价值型投入产出表的四个象限构成以下四个平衡关系:1第一象限中的物质消耗之和等丁中间产品之和,这说明生产过程中的生 产资料消耗必须以同等数量的中间产品来补偿;2第二象限的合计等丁第三象限的合计,说明在不考虑进出口等素下,社 会生产的国民收入与社会最终分配的国民收入相等;3每一行的总计等丁每一列的总计,说明在不考虑进出口时各部门生产的 产品和分配使用的产品在总
8、量上相等;4第一象限与第二象限合计之和等丁第一象限与第三象限合计之和,说明 整个社会产品的生产与使用量相等。3、投入产出表的分析应用根据投入产出表的内容与结构,可以对国民经济各部门的生产之间的技术 经济联系,进行逻辑严密的定量化分析应用,包括直接消耗系数,累计消耗系 数,最终产品系数的确定和价格矩阵的建立等。它们可为地区、部门或企业经 济的综合统计分析和计划的综合平衡提供必要的条件,对丁科学的安排预测和 分析经济活动具有重要意义。为便丁具体说明,现将表1简化为只有农业和工业两个部门的简化投入产 出表(表2),其中产品均用物理量表小,新创造的价值用劳动量代表。表2假设的简化投入产出表投入产 出农
9、业工业最终产品总产出量农业252055100(公斤小麦)工业1463050(平方米布)万动力 (人-日)80180该表说明:农业部门总产出量为100公斤小麦,本身留用25公斤,供应二 业用20公斤作为中间产品;最终产品55公斤提供社会使用,同时,为了产出100公斤麦子,除了消耗25公斤小麦外,还要投入工业中间产品布14平方米 和生产要素80人日的劳动力。(1)直接消耗系数直接消耗系数(或投入系数)是指某一部门生产单位数量的产品时,需要 直接消耗的有关部门中间产品和投入其它生产要素的数量。一般用aj表示,aij=xxj(i , j =1,2 - n)其中,Xj为部门j的总产出量。表3直接消耗系数
10、表需要投入量单位广量农业(每公斤小麦)工业(每平方米布)农业(公斤小麦)25/100=0.2520/50=0.40工业(平方米布)14/100=0.146/50=0.12劳动力(人-日)80/100=0.80180/50=3.60累计消耗系数(完全消耗系数)完全消耗系数是指某部门生产单位产品需要消耗另一部门产品的总量,包 括直接和间接消耗两部分。例如上述生产1公斤麦子,需要直接消耗0.25公斤麦子和0.14平方米布,但要生产所需要的这些麦子和布,乂要消耗一定数量的麦子和布,这是一次问 接消耗量,可计算如下:再生产需用麦子(公斤)0.25公斤0.25 X 0.25=0.06250.14平方米布0
11、.14 X 0.40=0.0560共计0.11850.0518这样,把直接和一次间接的消耗量相加得到:生产一公斤小麦需消耗0.25+0.1185=0.369公斤麦子和0.14+0.0518=0.192平方米布,依此,再计算 第二次间接消耗量并再累加起来,继续计算多次,直到直接间接消耗量可忽略 为止,上例的最后累计消耗量如表4所示即为完全消耗系数。表4完全消耗系数表需要投入量单位广量农业(每公斤小麦)工业(每平方米布)农业(公斤麦子)工业(平方米布)0.4570.2320.6620.242(3)最终产品系数需用布(平方米)0.25X 0.14=0.03500.14X 0.12=0.0168在经济
12、分析评价中,往往以社会对生产部门的最终产品量为准进行计算, 因此在累积消耗系数的基础上,乂提出了最终产品系数的概念,如表5所示在制定国民经济发展要求的最终产品指标后, 就利用最终产品系数估算出各生 产部门相应的生产水平。表5最终广品系数表需要投入量单位广量农业(每公斤小麦)工业(每平方米布)农业(每公斤小麦)1.4570.662工业(每平方米布)0.2321.242(4)列昂节夫逆矩阵上述表格,用现代数学的术语称为矩阵,如果表1中的最终品的需求以矩 阵符号Y表示,中间产品的交流矩阵用F表示,总投入和总产出相等,均用X表示,这样,则表中水平方向所反映生产产出的分配结构关系式,可表示为:F+Y=X
13、乂以矩阵符号A代表直接消耗系数矩阵,则有:F=AX AX+Y=X -Y=(I-A ) X即X = (I-A)-1Y式中,I为单位矩阵,(I-A)-1为生产部门为了满足单位数量的最终产品需 求所必须直接和间接产出的产品数量矩阵即最终产品系数矩阵,亦称为列昂节 夫逆矩阵。-11.457 0.662针对上例,有(I-A) = I:0.232 1.242-(5)价格矩阵用矩阵符号P来表示表1中垂直方向反映生产要素的投入结构,即生产中 价值形成的过程,有:P=A P+VTP=(I - A )-1V式中,P为单位产品价值矩阵,即价格矩阵,它等丁生产单位产品时,需 要投入的各种中间产品的成本,加上社会劳动新
14、创造的价值,或生产的总投入 的币值除以总产出的物理量。A为A的转置矩阵;V为单位产品中新创造的价值矩阵。按上面简化的例子,设每公斤小麦的价格为P1,每平方米布的价格为新创造的价值分另U为V和则按直接消耗系数表3可得到:P =0.25P1+0.14P2WIR = 1.457V+ 0.232V2P2 =0.40P1 +0.12P2 +V2: R = 0.662/+ 1.242V?上式也可由最终产品系数表5或列昂节夫逆矩阵求得,假设劳动力的报酬 为每人日1元,则按表3可知V为0.80 X 1=0.80元,V2为3.60X1=3.60元,将Vi和V2的值代入上式求得:Pi=1.457 X 0.80+0
15、.232 X 3.60=2. 0P2=0.662 X 0.80+1.242 X 3.60=5. 0即每公斤小麦的价格为2元,每平方米布的价格为5元。三.环境-经济投入产出模型传统的投入产出分析延伸到环境经济领域(即投入物不仅是中间产品等物 资消耗,还可包括环境资源或自然生态系统的产品与劳务,如环境容量和自然 净化能力等;产出物除了劳动成品外,也可能包括有废弃物在内),可得到各 种环境-经济投入产出模型,来研究经济与环境之间物质交换的综合平衡关系, 即经济发展对环境的影响,以及环境状况变化对社会经济的信息反馈。1.引入废弃物排放的投入产出表表6引入废弃物排放的投入产出表生产部门最终总12产m品里
16、生1X11X12X1 mYX产2入1X2X2 mY2X部. .门mXmlXT2Xm mYmXmm+Ym+废4Wm+1)1Wn+1)2VW+1)m弃1VW+2)1VT+2)2VW+2)m1m+Ym+物. .排22放W也wmnYn在经济活动中,生产产品的同时,必然要产生废物,其数量通常与产品量 成线性比例关系,这可以以物理量的形式引入传统的投入产出表中,列在物资 消耗下面,作为纵栏的延伸,如表6所示。其中W为生产各部门在产出产品j时排放的废弃物g的数量,横栏最终产 品下面为最终排入环境的废弃物总量Yg(g=n+1, m+2, n)0生产过程中废弃物 的产生与物资消耗一起发生,也有直接排放系数和累积
17、排放系数两种形式:(1)直接废弃物排放系数(直接污染系数)直接废弃物排放系数是指生产单位数量产品j时直接排放废弃物g的量, 记为egj,且有egj=W/X应用此式,按表工的简化投入产出表,假设工业部门生产每平方米布产生 并排出0.2克固体废弃物,农业部门生产每公斤小麦排出0.5克废弃物,当总 产量为100公斤小麦和50平方米布时,排放的废弃物分别为50克和10克,共 计60克,如表7所示:表7引入废弃物排放的简化投入产出表农业工业最终产品总产量农业25205530100公斤小麦工业14650平方米布废弁物排放501060克废弃物(2)累积废弃物排放系数(累积污染系数)其与最终产品系数的含义有点
18、类似,是指生产单位数量的最终产品j时,直接和间接产生并排放的废弃物g的数量,记作Q,并用矩阵符号表示后求得:一.口W=CY,C = EI-A式中,W为生产部门直接废弃物排放矩阵;C为累计废弃物排放系数矩阵;Y为最终排入环境的废弃物g的总量向量;E为直接废弃物排放系数矩阵;(I一AJ1即最终产品系数矩阵。按上述假设的简化例子可知,生产每公斤麦子和 每平方米布,分别排放废弃物0.5和0.2 g,即E = 0.5,0.2,则有,1 ,1.457 0.662卜2】=0.5,0.2|10.232 1.242-C=(1.457 X 0.5)+(0.232 X 0.2)=0.7749G=(0.662 X 0
19、.5)+(1.242 X 0.2)=0.5794将G, G以及YI,乂代入上式(*),可求得W,WW1=C1*Y1=42.62W2=C2*Y2=17.38共计60.00表8累计污染系数表需要投入量单位广量农业(每公斤小麦农业(每公斤小 麦)农业(公斤小麦)1.4570.662工业(平方米布)0.2321.242废弁物(克固体废物)0.77490.5794这样,在确定国民经济计划对最终产品的需要量后,就可以利用累计污染 系数估算出废物的总排出量。2.废弃物及其治理部门的引入在现实的经济系统中,为了防治污染和保护环境,还必须对生产中排放的 废弃物进行治理,因而在引入废弃物排放的投入产出表中,考虑引
20、入废物治理 部门,形成表9所示的完整形式。表9引入废弃物排放及其治理部门的系数投入产出表(用矩阵形式)生产部门废弃物治理部门最终产品总产量生产部门AAYX1废弁物排放E1E2Y2X2新创造的价值VV2表中A, A分别代表生产部门和废弃物治理部门的直接消耗系数矩阵;Ei,巳分别代表上述二部门的直接污染系数矩阵;Xi, X分别代表生产产品i和消耗废弃物g的总量向量;Yi,Y2分别代表最终需要产品i和最终排入环境的废弃 物g的总量向量;Vi,V2分别代表生产单位数量产品j和消除单位数量废弃物g时新创造的价值向量。 废物治理部门的物资消耗和排污1、直接消耗系数aj= qj/Sj(i =1,m) ( j
21、=m+1,n)qij表示治理单位j种污染物所消耗的i部门的产品数量。Sj表示j种污染物的治理量,Sj= 2 qji =m 12、直接污染系数=w / SjW表示治理单位j种污染物所产生的i种污染物数量。由丁污染治理部门产生的二次污染很小,所以往往忽略其累计污染系数。(2)弓I入废物治理部门对产品总产量的影响假设对废弃物在前面简化例子中进行治理时,每克废弃物需投入劳动力2人日(或增加价值2.00元)同时还需消耗0.2平方米布。根据投入产出关系,x=0.25x0.40 x2y1x2=0.14X0.12x20.20 x3y2x3=0.50 x0.20 x2-y3v = 0.80 x13.60 x22
22、.00 x3式中,x3为治理部门废弃物的总除去量:0.20 x3和2.00 x3分别为废弃物治 理所耗用的布和劳动力;y3是允许排入环境中去的废弃物其不需要废除,所以 数值是负的。解得:x=1.573y10.749y2- 0.150y3x2=0.449y11.404y2-0.281y3x3=0.876y0.655y2-1.313y3v = 4.626yi6.964y2-3.364y3上式右边第三项表明,去除每克废弃物时,需增加总产量0.15公斤小麦和0.281平方米布,同时治理部门要增加1.131克的废物处理量,劳动力增值需增 加3.364元,去除每克废弃物需要1.131克废物处理量的原因是:治理时需要投 入物资,而生产这部分物资时乂要产生废弃物,同时治理过程本身还会产生废弃 物,只有去除1.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 炼焦煤制备工岗前基础在岗考核试卷含答案
- 区块链应用操作员操作规程强化考核试卷含答案
- 三月三扫墓请假条
- 2025年半柔半刚射频同轴电缆项目合作计划书
- 2026年智能门窗光伏供电片项目可行性研究报告
- 2025年江苏省镇江市中考物理真题卷含答案解析
- 2025年四川省资阳市中考物理真题卷含答案解析
- 2025年临床核心制度培训考核试卷(含答案)
- 2025年地质勘探员安全生产知识定期考核题目及答案
- 选矿工技能巩固考核试卷及答案
- 地坪漆施工方案范本
- 2025宁波市甬北粮食收储有限公司公开招聘工作人员2人笔试参考题库及答案解析
- 2026年国有企业金华市轨道交通控股集团招聘备考题库有答案详解
- 2025年电子工程师年度工作总结
- 2026年吉林司法警官职业学院单招职业技能笔试备考题库带答案解析
- 2025年高职第三学年(工程造价)工程结算与审计测试题及答案
- 2024年曲阜师范大学马克思主义基本原理概论期末考试真题汇编
- 医院消毒技术培训课件
- 江苏省电影集团招聘笔试题库2026
- 《机械创新设计》课件-多功能播种机整体结构设计
- 增殖放流效果评估体系
评论
0/150
提交评论