




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等腰三角形等腰三角形。教学重点:探索并证明等腰三角形的性质定理。教学难点:等腰三角形“三线合一”的性质。动手做一做动手做一做ACBABCABC有什么特点有什么特点? ?看一看看一看有有两条边相等两条边相等的三角形叫做的三角形叫做等腰三角形等腰三角形. . 等腰三角形中,相等的两边都叫做等腰三角形中,相等的两边都叫做腰腰,另一边叫做另一边叫做底边底边,两腰的夹角叫做,两腰的夹角叫做顶角顶角,腰,腰和底边的夹角叫做和底边的夹角叫做底角底角.ACB腰腰底边底边顶角顶角底角底角底角底角 1 1、等腰三角形一腰为、等腰三角形一腰为3cm,3cm,底为底为4cm,4cm,则它的周长则它的周长是是 ; 2
2、2、等腰三角形的一边长为、等腰三角形的一边长为3cm,3cm,另一边长为另一边长为4cm,4cm,则它的周长是则它的周长是 ; 3 3、等腰三角形的一边长为、等腰三角形的一边长为3cm,3cm,另一边长为另一边长为8cm,8cm,则它的周长是则它的周长是 。 10 cm10 cm 或 11 cm19 cm小试牛刀 把剪出的等腰三角形把剪出的等腰三角形ABC沿折痕对折,沿折痕对折,找出其中重合的线段和角找出其中重合的线段和角. 等腰三角形是轴对称图形吗?等腰三角形是轴对称图形吗?等腰三角形是轴对称图形,。重合的线段重合的线段重合的角重合的角 AC B D ABAC BDCD ADAD B CBA
3、D CADADB ADC 大胆猜想大胆猜想猜想与论证等腰三角形的两个底角相等。等腰三角形的两个底角相等。已知:ABC中,AB=AC求证:B=C分析:分析:1.如何证明两个角相等?如何证明两个角相等? 2.2.如何构造两个全等的如何构造两个全等的三角形?三角形?猜想ABCDABC则有则有12D1 2在在ABD和和ACD中中证明证明: 作顶角的平分线作顶角的平分线AD,ABAC 12 ADAD (公共边)(公共边) ABD ACD (SAS) BC (全等三角形对应角相等)(全等三角形对应角相等) ABC则有则有 BDCDD在在ABD和和ACD中中证明证明: 作作ABC 的中线的中线ADABAC
4、BDCDADAD (公共边)(公共边) ABD ACD (SSS) BC (全等三角形对应角相等)(全等三角形对应角相等) ABC则有则有 ADBADC 90D在在RtABD和和RtACD中中证明证明: 作作ABC 的高线的高线ADABAC ADAD (公共边)(公共边) RtABDRtACD (HL) BC (全等三角形对应角相等)(全等三角形对应角相等) 猜想与论证等腰三角形的两个底角相等。等腰三角形的两个底角相等。已知:ABC中,AB=AC求证:B=C分析:分析:1.如何证明两个角相等?如何证明两个角相等? 2.2.如何构造两个全等的如何构造两个全等的三角形?三角形?性质1(等边对等角)
5、ABCD猜想等腰三角形一个底角为等腰三角形一个底角为7575, ,它的另外两个它的另外两个 角为角为_ _; 等腰三角形一个角为等腰三角形一个角为7070, ,它的另外两个角它的另外两个角 为为_; 等腰三角形一个角为等腰三角形一个角为110110, ,它的另外两个角它的另外两个角 为为_ _ _。75, 3070,40或55,5535,35小试牛刀 刚才的证明除了能得到刚才的证明除了能得到BC 你还能发现什么你还能发现什么?重合的线段重合的线段重合的角重合的角 A B D C ABAC BDCD ADAD B C.BAD CAD ADB ADC=90=90等腰三角形顶角的平分线平分底边并且垂
6、直于底边.性质2(等腰三角形三线合一)ABCD练习:选一选:1.(13年钦州)等腰三角形的一个角是年钦州)等腰三角形的一个角是80,则它的顶角,则它的顶角度数是(度数是( ) A.80 B.80或或20 C.80或或50 D.202.(13年南充)在年南充)在ABC中,中,AB=AC,B=70,则,则A=( ) A.70 B.55 C.50 D.403.已知等腰三角形的一个内角为已知等腰三角形的一个内角为70,则另外两个内角的,则另外两个内角的度数是(度数是( ) 如图:如图:ABC中,中,AB=AC。(1)若)若AD平分平分BAC,则,则BDA= , BD= 。(2)若)若BD=CD,则,则AD平分平分 , ADC= (3)若)若ADBC,则,则BAD= ,BC=2( )动手做一做ABCD如图,三角形ABC中,AC=BC,CD是ACB的平分线,AD=4cm,求AB的长及CDB的大小。CABD 轴对称图形轴对称图形两个底角相等,简称两个底角相等,简称“等边对等角等边对等角”顶角平分线、底边上的中线、和底边上的高顶角平分线、底边上的中线、和底边上的高互相重合,互相重合,简称简称“三线合三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源汽车废旧电池回收利用产业链环保要求与产业发展策略分析报告
- 企业顾问聘用协议
- 《口腔颌面部肿瘤病人的护理》教学课件
- 巡防队员安全培训课件
- 岩石应力波课件
- 输电安全培训的意义
- 小鸭韵律操课件
- 室内精装地砖铺设工程合同
- 5.2《诚实守信》 同步课件 2025-2026学年统编版道德与法治八年级上册
- 小青蛙找妈妈教学课件
- 2024年国家公务员考试《申论》真题(副省级)及参考答案
- 短缺药品管理制度
- 高中语文语法简略
- 登革热诊疗方案(2024年版)解读
- DBJ33T 1320-2024 建设工程质量检测技术管理标准
- 驾照科一试题库-900题
- SH∕T 3097-2017 石油化工静电接地设计规范
- CE安全标准规范(电气类)
- 第3课《追求人生理想》第2框《努力把人生理想变为现实》-【中职专用】《哲学与人生》同步课堂课件
- (2024版)大学本科新增专业《生物育种技术》解读
- JJG 643-2024标准表法流量标准装置
评论
0/150
提交评论