纯电动车热管理系统构建研究_第1页
纯电动车热管理系统构建研究_第2页
纯电动车热管理系统构建研究_第3页
纯电动车热管理系统构建研究_第4页
纯电动车热管理系统构建研究_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、纯电动车热管理系统构建研究1引言一个好的热管理系统是多个系濮合的复杂系统,是一个包含了电机/电控、电池温控、乘员舱温控 的整体系统,不同工况下采用不同的热管理模式,采用不同的控制策略。例如目前主流的电动汽车针对电池热管理系统采用独立的温控系统,制冷采用电池冷却 器 (Chiller)中冷媒与水换热,冷水流入电池冷板给电池冷却的方式,而电池加热采用系统 中串联的水加热 器(WPTC)加热系统循环水,再流入电池换热板给电池采暧。这套独立的电池温控系统存在以下2个问题。第一、在坏境温度较低,但受工况影响电池需要进行冷却时,例如电池快充或车辆高负 荷工况状 态下,仍需要启动电动压缩机,通过冷凝器和电池

2、冷却器对动力电池进行冷却,需 要消耗更多的电能。第二、车辆在低温刚启动后,动力电池需要加热保温时,此时需要启动电池加热器(WPTC)进行 电池加热,同时电机和电控系统会有散热需求,由于电机/电控系统和电池温 控系统相互独立,彼此能 星不能相互利用,造成能耗损失。所以为了提高能耗利用率,需要选用更加优化的系统,希望通过下面的介绍,能够在系统构建,策 略制走方面提供参考,制走符合项目要求的最优系统方案。2 EV整车热管理介绍常见电动汽车热管理系统由电机电控温控、动力电池温控、乘客舱温控3部分组成。电机电控温控由电子水泵、低温散热器、补偿水壶、电控单元冷却模块、逆变器冷却模块和驱动 电机冷却模块组成

3、。该系统的温控对象为纯电动汽车的电控单元、逆变器和驱动电机。3个温控对象的 发热功率,较之传统汽车散热呈小,且合适的工作温度相近,因此采用 串联进行连接。动力电池温控由 电池水冷模块、电子水泵、冷却器、水加热器和冷媒制冷回 路等构成。电池温控系统的作用在于维持各种工况下电池温度在合适工作范围内,因为较低 温度会影 响电池的放电功率安全性,较高温康会严重影响电池寿命和稳定性;不同电池式 样都有适合的工作温 度区间,比如铅酸电池温度范围在2045 ,所以电池温控系统需要 具备制冷和加热的功能。乘客 舱温控部分由电动压缩机、冷凝器、蒸发器和空气加热器等组成。由于热泵技术还多处于研发阶段成 员舱温控系

4、名赫Q传统差异不大本次不作详细讨论。针对电机/电控和电池热管理按发展的趋势分3种系统构建方式,下面进行详细研究讨论。3第I代热管理系统2015年前上市的电动车由于续航里程短、电池容呈小,热管理方面电机/电控与电池热管理分开 管理;电机/电控冷却系统多采用串联冷却式样,利用低温散热器对散热需求部件 进行散热,电机/电控 热管理系统如图1 (第1代热管理系统1图1 串联电机/电控/附属电器冷却系统(第1 代热管理系统)受制于技术和成本限制,早期电动车驱动系统散热部件包括:充电器、电源分配器、逆变器和电机, 采用串联冷却系统。此套系统需要考虑电器部件的发热星和性能要求,一般要求冷却液先流经彳氐发热、

5、 对温度敏感的部件,然后再对高发热部件进行冷却。由于部件分开 进行冷却,需要考虑整车布置要求, 这套系统回路冗长,系统流阻较大,对水泵性能及加注性能要求高。针对以上问题,部分车型进行技术升级,弓I入驱动系统模块化的设计,如图2所示。n.包画圆窗Tr图2优化的电机/电控冷却系统优化后的冷却系统在电控模块中集成其他电器功能,整车布置考虑电控模块和电机,尽星将他们布置在统一区域,减少系统回路长度,这套系统应用的典型车型如日产的LEAF车型。早期的EV车续航里程要求不高(一般v 200km ),电池能呈密度低,电池温控系统采用自然风量或主动风冷技术。自然风冷是通过外界空气与电池壳体进行换热完成电池整包

6、的温度控制,这种冷却方式对电池包的安装位置有要求,一般安装在地板等通风位置。强制风冷系统是根据热流体仿真分析的结果对电池热量分布区域进行强制散热,这种电池冷却方式在KJ.Kelly等研究报告中进行了研究。电池风冷系统会设定鼓风风扇,专用风道等零件;考虑到电池发热呈及电池内部温差的要求,电池内部风道的式样分以下3种类型,如图3所示,可以看到并联风道的流场更为合理。IIUI并联风道串联风道图3电池强制风冷风道类型4第2代温控系统随着电池容呈和电池能呈密度的增加,电池在充放电过程中产生的热能增加(电池整体 最大发热 呈大于5kW ),传统的风冷技术已经不能八足电池散热需求。第2代温控系统的特点在于保

7、持电机/电控系统水冷的基础上,电池温控系统采用更为高效的温控方式,针对电池制冷采用与空调系统进行耦合,同时考虑到保证电池低温性能,引入电池加热技术。3WXP 机空调冷躲萦统回路冷却液系*充回路图J第2代温控系统代聚回路图4是第2代温控系统比较有代表性的系统构建方案,可以看到电机/电控与第1代对 比无太大变化。电池温控系统具有制冷和加热功能,制冷采用引入电池冷却器(Chiller)来 实现,冷媒在冷却 器里蒸发使具内部的翅片变冷,翅片再与电池内部热交换后的暧水进行热交换,热交换后的冷水通过电 子水泵再次流入电池内部冷却板完成换热循环。针对电池低湍下的采暧需求,系统设定单独的水暧 PTC,一般功率

8、5kW以下。采用这种电池温控系统方案的国内车型有荣威E50、帝豪EV、景逸 S50EV等。针对电池采暖某些车企采用空调采暧和电池加热共用加热器的系统构建,如图5所示的系统。电子水最D"孑;Ml4水冷tta 冷 wan*图5电池采暖与空调制热共用加热器图5是针对电池采暧与空调制热共用加热的系统构建说明,这套系统优点是设走一个水加热器给 暧风和电池进行制暧,同时空调系统(制冷/制热)可以和传统燃油车共用。但这套系统需要重新构建空 调制热回路,增加电子水泵和相关管路。考虑到除霜、除雾法规要求,共用加热器功率较大(一般在7kW 以上),进入到暧风芯体的冷却液温度要求较高,一般800c以上,但

9、如此高温冷却液不能直接用于电 池加热,会造成电池过热,因为根据电池性能不同,影响电池寿命的温度限值有明确要求,一般在50 左右。为解决这个问题需要为电池回路追加热交换器,形成水水热交换;也有车企呈产车型采用四通阀 方案,如比亚迪 无。为了保证空调制热优先原则,需要对电池制暖温度控制,也需要对流进电池采暖部 分的高温防冻液的耋进行控制,同时需要为系统追加电子水阀,控制系统流呈。综上所述,共用加热器 的系统方案需要更多的构成件,系统构建更为复杂,控制更为复杂,成本更高。针对第2代温控系统构建概括如下。(1)电机/电控和电池温控采用两套系统回路,系统构月对简单,可以根据整车工况和实际需求单独控制。(

10、2)由于设走独立的电池温控系统,可以把电池温度控制在合适的工作温度,一般温度控制在1535七范围内,有利于提高电池的稳定性和寿命。由于存在电池采暖功能,电池在低温 下的性能表现得到了提升,特SU是大大缩短了低温充电时间。根据2019版EV - TEST (电动汽 车测评)管理规则对低温充电时间有要求,如果此项得分大于90分,SOC在080%的低温充电 时间/常温充电时间应小于1.3&(3篦2代温控系统电池的制冷和采暖分别需要启动压缩机和高压水加热器(WPTC),在北方低温 环境下电池充放电时的采暧和乘员舱的制热需求会占用大星的能耗,通过实验测试证明用于加热的能耗占电池总能耗的20%以上

11、,会影响整车的续航里程。5第3代温控系统通过对第2代温控系统构建的分析,发现第2代温控系统存在能耗过高的问题,需要 检讨更高效, 更节能的温控系统构建。电机/电控系统和电池温控系统的温度控制范围不同,电机/电控的系统温度高于电池适 合的工作 温度(15935),如表1所示。表1电机/电控作温度要求部件名称电控单元逆变器骡动电机作温度<55<65<65考虑到环境温度的影响,电机/电控系统的水温在500c左右,在低温情况下这部分水可 以流进电池进行电池预热。同时,当环境温度较低,电机/电控散热需求低,但电池需要制冷的时候,可以考虑采 用低温散热器给电池进行制冷。根据以上说明构建如

12、图6所示的系统回路(第3代温控系统)。阳子心I空调冷媒系统回路冷却液系统回路图6系统构建优势在于,电池慢充电或者高负荷放电时候可以根据环境温度来决定米用低温散热 器制冷或者空调系统制冷。同时可以将电机/电控的部分余热用于电池制暖或保温,这个功能在前后 双驱动电机/电控系统表现的较为实用,通过仿真分析说明如下。以某车开发模拟数据为例,在环境温度-7 (电池温度-7)条件下,进行0.5hCLTC工况循环模拟,分别分析电机冷却水温和电池有无余热回收电池温度,如图7所示。 电机冷却水ar雯余恰回牧后电池原度无余热回收电池浪度通过图7可知,图7电机余热利用说明电机冷却液温度与电池温度温差大于20七r热呈

13、利用率较高,同时可见电池在-7坏境电池在无余热利用时仅靠自身发热温升不明显。衷2第3代温控系统工作楼式行驶零件T作状态TbatvhninTl>at<TmaxTbat>TinaxThatPinaxH>at<5TIminSIlmKTmaxThat> hnaxri>at> Tmax水加热器(O)电池制 冷器XX(O)OXX(O)O压缩机XX(O)OXX(O)0电产膨胀 阀XX(0)OXX(O)O水阀通X通或关关关X通或关通X通或关关关XL戒关关电子 水采OOOOXXXXO(0)OOO(O)O0针对第3代温控系统,详细整理工作模式,如表2所示,其中Tba

14、t为电池实际温度,Tmin为 电池制暖开启限值温度,Tmax为电池制冷开启限值温度。工作模式包括行驶和充电工况,概括如下。5.1行驶工况(1) Tbat v Tmin :这种情况出现在环境温度和电池本体温度较低的情况,这个工况可以将电机 的余热用于电池加热或保温,结合电池放电自发热情况,这个工况下水加热器只有在极低温度下才会 启动;(2 ) TminvTbatvTmax :电池温度在合适的工作温度下,只需要给电机/电控系统制冷,但考虑 到电池内部均温要求,针对电池温控系统设走的电子水泵考虑部分时间开启;(3) Tbat > Tmax (散热器出水温度< 25):这种情况一般出现在环

15、境温度较低,同时整车在 高负荷工作,如长时间爬坡、高速、堵车等工况。此时电池放电功率大,温度逐渐上升需要制冷;由于 环境温度较低,低温散热器的换热效率较高(前置歆热器的布置方案尤为明显),经过低温散热器的冷 却液温度低于250c以下,这样的低温冷却液可以流入到电池 冷板给电池包进行制冷;(4 ) Tbat > Tmax (散热器出水温度25 ):当环境温度较高,经过低温散热器的冷 却液温庚较高(一般大于35)时,电池制冷需要借用空调系统,启动压缩机,通过电池冷却器为电 池制冷。52充电工;兄(1 )TbatvTmin :当电池温度较低情况下,电池活性会降低,电池充电时间大大增加,需要开启 水加热器为电池制暖再进行充电,通过实验数据得知有主动制暧功能的电池温控系统会缩短50%的 充电时间;(2 )TminvTbatvTmax :充电过程中电池温度持续在合适工作温度,只需要关注电池 温差,决 走是否启动电子水泵;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论