学苏教版八年级下册新期末复习数学知识点总结_第1页
学苏教版八年级下册新期末复习数学知识点总结_第2页
学苏教版八年级下册新期末复习数学知识点总结_第3页
学苏教版八年级下册新期末复习数学知识点总结_第4页
学苏教版八年级下册新期末复习数学知识点总结_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数据的收集、整理与描述收整描 4J分L_;得:4集理述:析:T :出: .14 W I! B WB U BII B 电识概念1 P抽样与样本1 .全面调查:考察全体对象的调查方式叫做全面调查。2 .抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。3 .总体:要考察的全体对象称为总体。4 .个体:组成总体的每一个考察对象称为个体。5 .样本:被抽取的所有个体组成一个样本。6 .样本容量:样本中个体的数目称为样本容量。频率分布1 、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围 所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到

2、它的频率分布。2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:计算极差(最大值与最小值的差)决定组距与组数决定分点列频率分布表画频率分布直方图( 2)频率分布的有关概念极差:最大值与最小值的差频数:落在各个小组内的数据的个数频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。确定事件和随机事件1 、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。随机事件发生的可能性一般

3、地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小 有可能不同。对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预 测它们发生机会的大小。要评判一些游戏规则对参与游戏者是否公平,就是看它们发生 的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大 小是否一样,用数据来说明问题。概率的意义与表示方法1 、概率的意义一般地,在大量重复试验中,如果事件A发生的频率。会稳定在某个常数p附近, m那么这个常数p就叫做事件A的概率。2、事件和概率的表示方法一般地,事件用英文大写字母A, B, C,,表示事件A的概率p,可记为P (A) =P考

4、点九、确定事件和随机事件的概率之间的关系1 、确定事件概率e (2)当A是不可能发生的事件时,P (A) =02、确定事件和随机事件的概率之间的关系不可能事件随机事件必然事件古典概型1 、古典概型的定义某个试验若具有:在一次试验中,可能出现的结构有有限多个;在一次试验中, 各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型。2、古典概型的概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P (A) =m n列表法求概率1 、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。2、列表法的

5、应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出 所有可能的结果,通常采用列表法。树状图法求概率 1 、树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。2、运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列 出所有可能的结果,通常采用树状图法求概率。利用频率估计概率1 、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个 常数,可以估计这个事件发生的概率。2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估 计,这样的试验称

6、为模拟实验。3、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些 随机产生的数据称为随机数。分式1 、分式定义:形如捺的式子叫分式,其中A B是整式,且B中含有字母。(1)分式无意义:B=0时,分式无意义;B乎0时,分式有意义。(2)分式的值为0: A=Q B才0时,分式的值等于0。(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是 把分子、分母因式分解,再约去公因式。(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。分式运算的 最终结果若是分式,一定要化为最简分式。(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母

7、分式的过程,叫做分式的通分。(6)最简公分母:各分式的分母所有因式的最高次募的积。(7)有理式:整式和分式统称有理式。2 、分式的基本性质:(1) A AJM(M是0的整式); - AJM(M是0的整式) B B MB B M(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个, 分式的值不变。3 、分式的运算:(1)力口、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减, 先把它们通分成同分母的分式再相加减。(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分 母。(3)除:除以一个分式等于乘上它的倒数式。(4)乘方:分式的乘方就是把

8、分子、分母分别乘方3.1、分式方程分母里含有未知数的方程叫做分式方程。2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程” 。它的一般解法是:( 1)去分母,方程两边都乘以最简公分母( 2)解所得的整式方程( 3) 验根: 将所得的根代入最简公分母, 若等于零, 就是增根, 应该舍去; 若不等 于零,就是原方程的根。3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。(补充)列方程(组)解应用题常见类型题及其等量关系;1 、工程问题( 1)基本工作量的关系:工作量=工作效率

9、X工作时间( 2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量( 3)注意:工程问题常把总工程看作“ 1 ” ,水池注水问题属于工程问题2 、行程问题(1)基本量之间的关系:路程二速度X时间( 2)常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程追及问题(设甲速度快) :同时不同地:甲的时间二乙的时间;甲走的路程-乙走的路程二原来甲、乙相距路程同地不同时:甲的时间二乙的时间-时间差;甲的路程二乙的路程3 、水中航行问题:顺流速度 =船在静水中的速度+水流速度;逆流速度二船在静水中的速度-水流速度4、增长率问题:常见等量关系:增长后的量=原来的量+增长的量;增长的量二原来的

10、量X (1+增长率);5、数字问题:基本量之间的关系:三位数=个位上的数+十位上的数x 10+H位上的数X 100列方程解应用题的常用方法1、 译式法: 就是将题目中的关键性语言或数量及各数量间的关系译成代数式, 然后根据代数之间的内在联系找出等量关系。2、 线示法: 就是用同一直线上的线段表示应用题中的数量关系, 然后根据线段长度 的内在联系,找出等量关系。3、列表法:就是把已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。4、图示法:就是利用图表示题中的数量关系,它可以使量与量之间的关系更为直观, 这种方法能帮助我们更好地理解题意。反比例函数1 、反比例函数的概念一般地,函数y -

11、 (k是常数,k 0)叫做反比例函数。反比例函数的解析式也可x以写成y kx 1的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是 一切非零实数。2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限, 或第二、四象限,它们关于原点对称。由于反比例函数中自变量x 0,函数y 0,所以, 它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不 到坐标轴。3、反比例函数的性质反比例函数k的符k>0k<0图像性质4、x的取值范围是x 0x的取值范围是x 0y的取值范围是y 0;y的取值范围是y 0;当k>0时,

12、函数图像的两个分支分别当k<0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y在第二、四象限。在每个象限内,y随x的增大而减小。随x的增大而增大。反比例函数解析式的确定确定及俟是的方法仍是待定系数法。由于在反比例函数y k中,只有一个待定系数, x因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。5、反比例函数中反比例系数的几何意义如下图,过反比例函数y -(k 0)图像上任一点P作x轴、y轴的垂线PA xxyPB,则所得的矩形PMO的面积S=PAPB=y?xy , xy k, S k。 x中心对称图-1 .旋转:在平面内,将一个图形绕一个图形按某个

13、方向转动一个角度,这样的运动叫做 图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的 每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距 离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。)2 .旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图 形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小 于0° ,大于360 )。3 .中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说, 这个图形成中心对称图形

14、。中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就 说,这两个图形成中心对称。4 .中心对称的性质:关于中心对称的两个图形是全等形。关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。平行四边形1 、平行四边形:两组对边分别平行的四边形叫做平行四边形。2 、平行四边形性质定理1:平行四边形的对角相等。3 、平行四边形性质定理2:平行四边形的对边相等。D ABVCD.AD疗BCJA£ = CD -,AD = Bl4、平行四边形性质定理2推论:夹在平行线间的平行线段相写Z>

15、;1=ZC;Z5=ZBn=m5 、平行四边形性质定理3:平行四边形的对角线互相平分。6 、平行四边形判定定理1: 一组对边平行且相等的四边形是平行四边形。7 、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。8 、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。9 、平行四边形判定定理4:两组对角分别相等的四边形是平行四边形。说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。同时又是证明线段相等,角相等或两条直线互相平行的重要方法。(2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方 法。三、矩形矩形是特殊的平行四边形,从运动变化的

16、观点来看,当平行四边形的一个内角变 为90°时,其它的边、角位置也都随之变化。因此矩形的性质是在平行四边形的基础上 扩充的。1 、矩形:有一个角是直角的平行四边形叫做矩形(通常也叫做长方形)2 、矩形性质定理1:矩形的四个角都是直角。3 .矩形性质定理2:矩形的对角线相等。4 、矩形判定定理1:有三个角是直角的四边形是矩形说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必 定是直角。5、矩形判定定理2:对角线相等的平行四边形是矩形。说明:要判定四边形是矩形的方法是:法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)法二:先证明出是平行四边形,再证出

17、对角线相等(这是判定定理1)法三:只需证出三个角都是直角。(这是判定定理2)四、菱形菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。1 、菱形:有一组邻边相等的平行四边形叫做菱形2 、菱形的性质1:菱形的四条边相等。3 、菱形的性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角4 、菱形判定定理1:四边都相等的四边形是菱形。5 、菱形判定定理2:对角线互相垂直的平行四边形是菱形。说明:要判定四边形是菱形的方法是:法一:先证出四边形是平行四边形,再证出有一组邻边相等。(这就是定义证明)。法二:先证出四边形是平行四边形,再证出对角线互相

18、垂直。(这是判定定理2)法三:只需证出四边都相等。(这是判定定理1)(五)正方形正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。1 、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。Ar-刁口2 、正方形性质定理1:正方形的四个角都是直角,四条边都相等。0L_IC3、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。4、正方形判定定理互:两条对角线互相垂直的矩形是正方形。5 、正方形判定定理2:两条对角线相等的菱形是正方形。注意:要判定四边形是正方形的方法有方法一:第一步证出有一

19、组邻边相等;第二步证出有一个角是直角;第三步证出是平行四边形。(这是用定义证明)方法二:第一步证出对角线互相垂直;第二步证出是矩形。(这是判定定理1)方法三:第一步证出对角线相等;第二步证出是菱形。(这是判定定理2)六、中位线1 、三角形的中位线连结三角形两边中点的线段叫做三角形的中位线。说明:三角形的中位线与三角形的中线不同。2 、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。二次根式1、二次根式的概念:式子,a(a 0)叫做二次根式。(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得 尽方的因式的二次根式叫最简二次根式。(2)同类二次根式:化为

20、最简二次根式之后,被开方数相同的二次根式,叫做同类 二次根式。(3)分母有理化:把分母中的根号化去叫做分母有理化。(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根 式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:与za ;a Vb c'd 与 aJb c" )2 、二次根式的性质:(1)(国2a(a 0);a2a (aa (a(3).ab0);0)b>0);(4)ab、a(a 0,b 0) b、运算:(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式a a Jb Vab (a>0, b>0) oa . a(a 0,b 0),b ' b二次根式运算的最终结果如果是根式,要化成最简二次根式。一元二次方程元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式(2)二次根式的乘法:(3)二次根式的除法:ax2 bx c 0(a 0),它的特征是:等式左边十一个关于未知数x的二次多项式, 等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项 系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论