下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载人教版八年级上册数学课本知识点归纳第十一章全等三角形一、全等形能够完全重合的两个图形叫做全等形。二、全等三角形1. 全等三角形:能够完全重合的两个三角形叫做全等三角形。(两个三角形全等,互相重合的顶点叫做 对应点,互相重合的边叫做 对应边,互相重合的角 叫做对应角。)2 .全等三角形的符号表示、读法 :AAEC 与AEC全等记作 AAEC 幻AEC,“幻”读作“全等于”。(两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端 点的线段是对应边;对应的三个字母表示的角是对应角)。3 .全等三角形的性质:全等三角形的对应边相等,对应角相等。二、三角形全等的
2、判定:1. 三边对应相等的两个三角形全等,简写成“边边边”或“ SSS”。2.两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”或 “SAS”。3.两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”或 “ASA”。学习必备欢迎下载4.两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“ AAS”。5.斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜 边、直角边”或“ HL”。(SSA、AAA 不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。)三、角的平分线的性质1 性质:角平分线上的点到角的
3、两边距离相等。2.逆定理:在角的内部,到角的两边距离相等的点在角平分线上。(3 三角形的内心:利用角的平分线的性质定理可以导出:三角形的三个内角的角平分线交于一点,此点叫做三角形的内心,它到三边的距离相等。)第十二章轴对称一、轴对称1. 轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能 够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴 折叠后重合的点是对应点,叫做对称点。2. 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线, 叫做这条线段的垂直平分线3. 轴对称的性质:1如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。(或者说轴对称图形的
4、对称轴,是任何一对对应点所连线段的垂直平分线.)学习必备欢迎下载4. 线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个 端点的距离相等。(或者说与一条线段两个端点距离相等的点,在这 条线段的垂直平分线上)。二、作轴对称图形1 归纳 1:由一个平面图形可以得到它关于一条直线L 成对称轴的图形,这个图形与原图形的大小、形状,完全相同。新图形上的每一 点,都是原图形上某一点关于直线 L 的对称点。连接任意一对对应点 的线段都被对称轴垂直平分。2. 归纳 2:几何图形都可以看做由点组成,我们只要分别做出这些 点关于对称轴的对应点,再连接这些对应点,就可以得以原图形的轴 对称图形;对于一些由直线
5、、线段或射线组成的图形,只要做出图形 中的一些特殊点(如线段的端点)的对称点,连接这些对称点,就可以 得到原图形的轴对称图形。轴对称变换:由一个平面图形得到它的轴对称图形叫做轴对称变换。3.用坐标表示轴对称: (1)点 P (x, y)关于 x 轴对称的点的坐标 为 P (x,-y); (2)点 P(x,y)关于 y 轴对称的点的坐标为 P (-x, y)。三、等腰三角形1.等腰三角形:有两条边相等的三角形,叫做等腰三角形。(相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫 做底角。)2.等腰三角形的性质(1) 等腰三角形的两个底角相等(简称“等边对等角”)。学习必
6、备欢迎下载(2) 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。3.判定:如果一个三角形有两个角相等,那么这两个角所对的边也 相等。(简称“等角对等边”)。3. 等边三角形:三条边都相等的三角形叫做等边三角形。4. 等边三角形的性质:等边三角形的三个内角都相等,并且每一个 角都等于 60 。5.判定:三个角都相等的三角形是等边三角形。有一个角是60的等腰三角形是等边三角形。第十三章实数一、算术平方根1. 算术平方根:如果一个正数 x 的平方等于 a,即 x2=a,那么这个 正数 x叫做 a 的算术平方根,记作a。0 的算术平方根为 0;2. 平方根: 如果一个数 x 的平方等于 a
7、,即 x2=a,那么数 x 就叫做 a 的平方根(或二次方根)。3. 开平方:求一个数 a 的平方根的运算(与平方互为逆运算)4. 平方根性质:正数有 2 个平方根(一正一负),它们是互为相反数;负数没有平方根。二、立方根1 立方根:如果一个数 x 的立方等于 a,即 x3=a,那么数 x 就叫做 a 的立方学习必备欢迎下载根(或三次方根)。2. 开立方:求一个数 a 的立方根的运算(与立方互为逆运算)。3.立方根性质:正数的立方根是正数;负数的立方根是负数。0的 立方根是 0;三、实数1 无理数:无限不循环小数。如:n、V2.V32.实数:有理数和无理数统称实数。实数都可以用数轴上的点表示。
8、第十四章一次函数一、变量与函数1. 变量:在一个变化过程中,数值发生变化的量叫做变量。2. 常量:数值始终不变的量叫做 常量。3. 函数:一般的,在一个变化过程中,如果有两个变量 x 与 y,并且 对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们 就说 y 是 x的函数,x 是自变量。Y 的值叫函数值。4. 函数解析式:表示 x 与 y 的函数关系的式子,叫函数解析式。自 变量的取值不能使函数解析式的分母为 0。5. 函数的图像:一般的,对于一个函数,如果把自变量与函数的每 对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成 的图形,就是这个函数的图象。6. 描点法画
9、函数图像的步骤:列表、描点、连线。学习必备欢迎下载表示函数的方法:列表法、解析式法、图像法。二、一次函数1 正比例函数:一般地,形如 y=kx(k 为常数,且 kz0)的函数叫做正 比例函数.其中 k 叫做比例系数。2.正比例函数的图象与性质:(1)图象:正比例函数 y= kx (k 是常数,kz0)的图象是经过原点的一 条直线,我们称它为直线 y= kx。(2)性质:当 k0 时,直线 y= kx 经过第三,一象限,从左向右上升,即 随着 x 的增大 y 也增大;当 k0 时,直线 y= kx+b 从左向右上升,即随着 x 的增大 y也 增大;当 kn)即同底数幕 相除,底数不变,指数相减。
10、2.a0=1 (az 0)任何不等于 0 的数的 0 次幕都等于 1。3.单项式除以单项式:(1)系数相除(2)同底数幕相除(3)只在 被除式里的幕不变4.多项式除以单项式:先把这个多项式的每一项分别除以单项式, 再把所得的商相加。四、因式分解1.因式分解:把一个多项式化成几个整式乘积的形式,这种变形叫 做把这个多项式因式分解,也叫做把这个多项式分解因式。2.公因式:一个多项式中各项都含有的相同的因式,叫做这个多项 式的公因式。3.分解因式方法:(1) 提公因式法: ma+mb+mc =m(a+b+c)(2) 运用公式法:把整式中的乘法公式反过来使用;1平方差公式:a2 b2= (a+ b)
11、(a-b)学习必备欢迎下载2完全平方公式:a2+ 2ab + b2= (a+ b)2; a2+ b2= (a+ b)2 2aba2 2ab + b2= (a b)2; a2+ b2= (a b)2+ 2ab3立方差公式: x3-y3=(x-y)(x2+xy+y2)(3)十字相乘法 1(二次项系数是 1): x2+(p+q)x+pq二(x+p)(x+q)二次项系数是 1;常数项是两个数之积;一次项系数是常数项的两个因数之和。十字相乘法 2(二次三项式):即将二次三项式 ax2+bx+c 的系数 a 分解成 a2,常数项 c 分解成 c, 并且把 aia2, C1C2排列如下:aiciXa2C2这
12、里按斜线交叉相乘,再相加得到aiC2+ a2ci,如果它正好等于 b(aiC2+ a ci=b),那么 ax +bx+c 就可以分解成(aix+G)( a2x+Q)。评注:利用十字相乘法分解因式的关键是把二次三项式中二次项系数 和常数项分解因式,使得它们按斜线交叉相乘之积的和刚好等于原二 次三项式中一次项的系数。4十字相乘法 3(二次六项式):又叫双十字相乘法。对于某些二次六 项式a+bxy+c+dx+ey+f。 可以看做关于x的二次三项式, ax2+ (by+ d) x + (cy+ey+f)。先用十字相乘法将常数项(cy2+ey+f)分解,再利用十字 相乘法将关于 x 的二次三项式分解。(4) 分组分解法:(i)定义:分组分解法,适用于四项以上的多项式, 例如a2- b2+a- b,既没有公因式,又不能直接利用公式法分解,但是 如果将前学习必备欢迎下载两项和后两项分别结合,把原多项式分成两组。再提公因式, 即可达到分解因式的目的。例如:a2- b2+a- b=( a2-b2) +( a- b) =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环保行业环境咨询员考试试题及答案
- 小学信息技术实践教学设计案例
- 一般过去时语法强化训练
- 菏泽大润发超市活动方案
- 说课稿美术绘画活动方案
- 设计公司家装节策划方案
- 蓝莓展销活动方案
- 装修公司微信爆破活动方案
- ISO45001职业健康安全体系审核重点
- 搭建企业员工交流平台的计划
- 企业资源计划配置模板
- 中央空调系统维护技术规范
- 三级安全教育考试试题与答案及答案
- 2025至2030中国扫描声学显微镜(SAM)行业项目调研及市场前景预测评估报告
- 固态相变原理及应用
- 脊柱损伤患者搬运课件
- 2025ESC心肌炎与心包炎管理指南要点解读课件
- 用户驻地网的、服务创新创业项目商业计划书
- 李清照的如梦令课件
- 急性心肌梗死的急救流程
- 近红外光谱法在纸张和纸质文物鉴定中的应用研究
评论
0/150
提交评论