七年级数学第二章知识点及典型习题梳理_第1页
七年级数学第二章知识点及典型习题梳理_第2页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、复习课题:第二章 整式的加减(小结与回顾) 上课教师:韩悦上课班级:七(1 1)班上课时间:20152015 年 1 1 月 1717 日一 1 1 月 2424 日 同学们,相信你们已经成功地完成了上一部分的任务, 那么就让我们 再接再厉踏上新的征程吧! ! !第二章整式的加减(54 页-76 页)知识点总结厂1.单项式 Y定义系数 次数由数字或字母的积组成的式子 数字因数所有字母的指数的和定义:几个单项式的和项:每个单项式常数项:不含字母的项j 次数:次数最高项的次数字母相同相同字母的指数也相同去括号 合并同类项知识点一:整式、单项式与多项式的判断1、没有加减运算的整式叫做单项式。(数字与

2、字母的积母)2、几个单项式的和叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。说明:没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式2.多项式3.整式的加 减合并同类项去括号系数相加字母及指数不变如果括号外的因数是 正数(+),去括号后,原括号内各项的符号与原 的符号相同如果括号外的因数是 负数(-),去括号后,原括号内各项的符号与原 的符号相反包括单独的一个数或字、书写含有字母的式子时应注意:(1)当数字与字母相乘时,乘号通常省略不写或简写为”,且数字在前,字母在 后,若数字是带分数,要化为假分数;(2)字母与字母相乘时,乘号通常省略不写或简写为”,如axb写成

3、ab或ba;(3) 除法运算写成分数形式。(一) 单项式1、都是数字与字母的乘积2、单项式的数字因数叫做单项式的系数。3、单项式中所有字母的指数和叫做单项式的次数。4、单独一个数或一个字母也是单项式。5、 只含有字母因式的单项式的系数是1或一1。6、单独的一个数字是单项式,它的系数是它本身。7、 单独的一个非零常数的次数是0。女口5的次数是0。8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。9、单项式的系数包括它前面的符号。10、单项式的系数是带分数时,应化成假分数。11、 单项式的系数是1或一1时,通常省略数字“1”。如k,pq1 2 3等。12、 单项式的次数仅与字母有关,

4、与单项式的系数无关。如9X104a2b5 6c的次数是6,与107无关。字母x降幕排列。另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幕排列。例如,多项式2x3+5x+8-5x2可以改写成8+5x-5X2+2x3的形式,这种书写形式就是把多项式按字母x升幕排列。注意:(1)利用加法交换律重新排列时,各项应带着它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幕或升幕排列。(三) 整式1、单项式和多项式统称为整式。2、单项式或多项式都是整式。3、整式不一定是单项式。4、整式不一定是多项式。5、分母中含有字母不是整式。(四) 整式的值一般地,

5、用数值代替整式里的字母,按照整式中的运算关系计算得出的结果,叫做整式的值。要点诠释:1、一个整式的值是由整式中字母的取值而决定的所以整式的值一般不是一个固定的13、圆周率n是常数。(二) 多项式2几个单项式的和叫做多项式。3多项式中的每一个单项式叫做多项式的项。4多项式中不含字母的项叫做常数项。5一个多项式有几项,就叫做几项式。6多项式的每一项都包括项前面的符号。7多项式没有系数的概念,但有次数的概念。数,它会随着整式中字母取值的变化而变化因此在求整式的值时,必须指明在什么条件下如:对于整式n2;当n=2时,代数式n-2的值是0;当n=4时,代数式n-2的值是2;2、整式中字母的取值必须确保做

6、到以下两点:使整式有意义,使字母所表示的实际数量有意义,例如:式子中字母表示长方形的长,那么它必须大于0;3、求整式的值的一般步骤:如果整式能化简,则先化简;如果不能化简,则由整式的值的概念,需要:一要代 入,二要计算.求整式的值时,一要弄清楚运算符号,二要注意运算顺序在计算时,要注意按整式指明的运算进行。注:(1)整式中的运算符号和具体数字都不能改变;(2) 字母在整式中所处的位置必须搞清楚;(3) 如果字母取值是分数或负数时,作运算时一般加上小括号,这样不易出错。知识点二:整式的加减(一)同类项、合并同类项1同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。几个常 数项也是

7、同类项。要点诠释:同类项有两个特征,一是所含字母相同;二是相同字母的指数也相同。二者缺一不可。而与系数大小、字母的先后顺序没有关系。简单地说,就是“两相同,两无关”。另外,常数项都是同类项。2合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。要点诠释:(1)合并同类项的法则是:同类项的系数相加, 所得的结果作为合并后所得项的系数, 字母和字母的指数不变。(2) 合并同类项的一般步骤:I先判断谁与谁是同类项;注:所有的常数项都是同类项, 合并时把它们结合在一起, 运用有理数的运算法则合并。n.利用法则合并同类项;1合并同类项时,系数相加,字母部分不变,不能把字母的指数也相加,2女口2a+

8、5az7a。2如果两个同类项的系数互为相反数,合并同类项后,结果为0。3合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,不能合并的项, 在每步运算中不要漏掉。4写出合并后的结果。注:合并同类项时,只要多项式中不再有同类项,就是最后的结果,结果可能是单项式,也可能是多项式。(二)去括号与添括号1.去括号法则:括号前是“ + ”号,把括号和它前面的“ + ”号去掉,括号里的各项都不变符号; 括号前是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号。 要点诠释:(1) 括号前面有数字因数时,应利用乘法分配律,先将该数与括号内的各项分别相乘, 再去掉括号,以避免发生符号错误;

9、(2) 在去掉括号时,括号内的各项或者都要改变符号,或者都不改变符号,而不能只改 变某些项的符号;(3) 定要注意括号前面的符号,它是去掉括号后,括号内各项是否变号的依据。如括号前面是“-”号, 去括号时常忘记改变括号内每一项的符号,出现错误,或括号前有数字因数,去括号时没把数字因数与括号内的每一项相乘,出现漏乘的现象,只有严格按照去括号法则,才能避免出错。2.添括号法则:所添括号前面是“ + ”号,括到括号里的各项都不变符号; 所添括号前面是“-”号,括到括号里的各项都改变符号. 要点诠释:(1) 添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“ + ” 号或“一”号也是新

10、添的,不是原来多项式的某一项的符号“移”出来的;(2) 添括号时,首先要理解题目的要求,弄清楚括号前是“ + ”号还是“”号,然后再根据法则添括号,尤其要注意括号前面是“-”号时,括到括号内的各项都要改变符号;(3) 把一些项放在带有系数的括号里,每一项都要除以这个系数,女口6a4b=2(6a-24b-2)=2(3a2b);(4) 去括号和添括号是两个相反的过程,因此可以相互检验正误。女口a+bc与a+(bc);ab+c与a(bc)。(三) 整式的加减一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。 要点诠释:1、 整式的加减运算实质是正确地去括号、合并同类项,以及进行实际背景

11、的加减运算;2、 几个多项式相加,可以省略括号,直接写成相加的形式,如3a+2b与2a+b的和 可直接写成3a+2b2a+b的形式;3、 两个多项式相减,被减数可不加括号,但减数一定要加上括号。如3a+2b与2a+b的差可写成3a+2b(2a+b)的形式,再去括号进行计算;4、 在进行整式加减运算时,有时可把着眼点放在问题的整体上,用整体思想考虑问题, 可使计算简化;5、不要漏掉不能合并的项。注:(1)寻找同类项的过程就是把多项式的项按所含字母相同,并且相同字母的指数也分别 相同进行分类;(2)先化简再求值,就是把一个较复杂的多项式转化为一个较简单的多项式或单项式, 再代入求值,体现了转化思想的优越性;练习题我就不给了,在网上做题也不方便。直接自我完成书上 要求仍是利用好练习本与错题本。发愤早为好,苟晚休嫌迟,最忌不努力,一生都无知。华罗庚7、多项式中次数最高的项的次数,叫做这个多项式的次数。 要点诠释:(1)多项式的每一项都包括它前面的符号。如多项式6x22x7,它的项是6x2, 2x, 7;(2) 多项式3n42n2+n+1的项是3n4, 2n2,n,1,其中3n4是四次项,一2n2是二 次项,n是一次项,1是常数项;(3) 多项式的次数不是所有的项的次数之和,而是次数最高项的次数;(4) 多项式中含有几项,就是几项式,最高项的次数是几,就是几

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论