(整理)传输矩阵法._第1页
(整理)传输矩阵法._第2页
(整理)传输矩阵法._第3页
(整理)传输矩阵法._第4页
(整理)传输矩阵法._第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档精品文档传输矩阵法概述1.传输矩阵在介绍传输矩阵的模型之前,首先引入一个简单的电路模型。如图 1(a)1(a)所示, 在(a)(a)中若已知 A A 点电压及电路电流,贝賊们只需要知道电阻 R,R,便可求出 B B 点 电压。传输矩阵具有和电阻相同的模型特性。(b)图 1 传输矩阵模型及电路模拟模型如图 1(b)1(b)所示,有这样的关系式存在:B=M(z)EB=M(z)Ei。M(z)即为传输矩阵,它将介 质前后空间的电磁场联系起来,这和电阻将 A A、B B 两点的电势联系起来的实质是 相似的。传输矩阵法多应用于多层周期性交替排列介质(如图 2 2 所示),M(z)M(z)反映 的介

2、质前后空间电磁场之间的关系, 而其实质是每层薄膜特征矩阵的乘积, 若用Mj表示第 j j 层的特征矩阵,则有:传输矩阵法EoEi图 2 多层周期性交替排列介质精品文档(1)精品文档NM M二M Mj =如公式(2 2)所示,Mj的表示为一个 2 2X2 2 的矩阵形式,其中每个矩阵元都 没有任何实际物理意义,它只是一个计算结果,其推导过程将在第二部分给出。2传输矩阵法在了解了传输矩阵的基础上,下面将介绍传输矩阵法的定义:传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输 矩阵形式,变成本征值求解问题。从其定义可以看出,传输矩阵法的实质就是将麦克斯韦方程转化为传输矩 阵,也就是传

3、输矩阵法的建模过程,具体如下:利用麦克斯韦方程组求解两个紧 邻层面上的电场和磁场,从而可以得到传输矩阵,然后将单层结论推广到整个介 质空间,由此即可计算出整个多层介质的透射系数和反射系数。传输矩阵法的特点:矩阵元少(4 4 个),运算量小,速度快;关键:求解矩 阵元;适用介质:多层周期性交替排列介质。传输矩阵的基础理论 一一薄膜光学理论1.麦克斯韦方程组麦克斯韦方程组由四个场量: D D E E、B B、H,H,两个源量:J J、,以及反映它们 之间关系的方程组成。而且由媒质方程中的参数、匚反映介质对电磁场的影响。方程组的实质是描述电磁场的传播, 即: 一个变化的磁场引起邻近区域的 电场变化,

4、而此电场的变化又引起邻近磁场的变化,如此进行下去,便可抽象出 电磁场的传播。如图 3 3 所示。其中,COSCOS、jVVj j sinsinCOSCOSj- -:j j 为相位厚度,有、;j. . N Njd djCOSCOSjk精品文档2(11)(11)精品文档HEHEHEHE电磁场传播的模拟图并对方程组求解可得以下两个重要结论:c .二V(4 4n - jk式(4 4)中,N N 即为介质的光学导纳,单位为西门子。特别说明:光波段时,o =o.oo265377电磁波在介质交界处满足切向分量连续的边界条件。垂直入射时,电场和磁巳二和(卽HHH-J式(8 8)中,上标为+ +的代表入射波,-

5、 -表示反射波。又由导纳定义式(4 4)可图 3将媒质方程带入麦克斯韦方程组,1)1)J J 约等于 1 1, N N 数值上等于折射率。自由空间导纳2)2)2;:2E2E=-2 - 2+C:t2:V护t式(5 5)为电场的波动方程,与经典波导方程(常把光速 C C 和电磁波在介质中速度之比定C,通即得折射率公式:6 6)相比可得v场均与入射面垂直,则它们的切向分量既是本身。根据边界条件可得:1得:H。二N(k Eo)Ho二No(-k(电0H厂N1(k E1)将式(9 9)、( 1010)代入(8 8)E E;N。- N1ro o-EoNoN1中,整理可得反射系数定义式:R= r(10)(10

6、)为反射系数,R R 为反射率。透射系数原理相同,在此不再推导。精品文档精品文档上面讨论的是垂直入射的情况,斜入射时情况类似,只是用修正导纳、!代替(1111)中的N。、N N。其实,无论电磁波入射情况如何,电磁波只有两种情况:一种是电场 E E 平行 入射面即丁皿波(P P 分量),此时电场的切向分量Etg=Ecosd(二为入射角), 而磁场的切向分量是其本身,因此由(4 4)式可得:H H= =H Htg=N(kN(k E Etg) )= =N(kN(k E ECOST) (k(k E)E)cosBcosB将(1212)式与(4 4)式对比可得到 P P 分量的修正导纳,同理可得 TETE

7、 波(S S 分量)的修正导纳:nNn =-pcoss= N cos)可得一般情况下的反射、透射系数表达式: 一2r = -t =n0十n1(1414) +n+n1 1介质的传光特性可以由反射、透射系数所表征,而由以上讨论可知,这两个参数与导纳紧紧联系。因此,求解介质的传光特性就可以转换为求解导纳问题, 这也是传输矩阵法所解决的核心问题之一。其实,传输矩阵法就是通过求得介质 的导纳,从而得到介质的反射透射系数。3传输矩阵这一部分将应用薄膜光学理论详细推导介质的传输矩阵,以及如何求得介质 导纳,根据第一部分传输矩阵的介绍可以知道,它其实是每层特征矩阵的乘积, 所以,这一部分的推导就从单层薄膜的特

8、殊矩阵入手, 进而推广到整个介质空间 推导出介质的传输矩阵。F F 面就详细介绍单层薄膜的特殊矩阵。电磁波通过厚度为d1d1 的单层薄膜过程如图 4 4 所示。(12)(12)(13)(13)精品文档精品文档E0NoN2E2 2图 5 5 单层薄膜等效为介质面的示意图薄膜是存在一定厚度的,电磁波从Eo透过薄膜变为E2的过程,与简单的穿过介质面相比多了个Ei的中间变换,如果可以将Eo和E2通过导纳直接联系起来,那么薄膜就可以等效为一个介质面(如图 5 5 所示),前面所介绍的反射透射 公式便可用。因此,我们第一步完成从薄膜到介质面的等效推导。 令薄膜导纳(介 质面 1 1 和介质面 2 2 的组

9、合导纳)为丫,则可得到薄膜的透射反射系数:(15)(15)由式(1515)可知,求得丫便可求得 r r、t to由导纳定义并对薄膜的第一介质面应用边界连续条件可得:町0图 4 4 电磁波通过单层薄膜精品文档精品文档H。二Y(k Eo)(16)(16)精品文档(17)(17)(22)(22)精品文档=E EE E_o o 1111+ _Eo= kE1kE11H。二 i(k Eii-k EG图 4 4 中的E11、E1?表示刚刚穿过介质面一的瞬时状态。E12、EQ表示即将穿过介质面二的瞬时状态。这两个瞬时状态的唯一不同只是因为薄膜厚度引入的相 位因子,即有:E12=巳浄八1k E (k巳2疋1H=

10、 (k冠)/1AAk E12=?(k E2)EoHo=HoH= H11H11E!2= Nd1将式(1818)代入式(1717)中可得式(N1d1cos r1(18)(18)1919),并将其转为矩阵形式2020):(19)(19)k Eod1E12_Ho一1*-1h1_k(20)(20)E1;同理,薄膜的第二介质面有如下关系式:E2二E12E12k E2= k E12kE12(21)(21)H厂H12H12H厂1(k E12-kEQ,H2212精品文档(17)(17)(22)(22)精品文档11k E12(k E2) H22212(27)(27)精品文档精品文档一111k火1=721E21(2

11、3)(23)Ik汇I11I.H2一2211式(2020)、(2323)分别表示介质面一、二两侧空间电磁场之间的联系,若将 式(2323)代入式(2020)中相乘,则所得到的结果就表示整个薄膜两侧空间电磁场 之间的联系,即:111k E011 eL11221k E21 IIlu丨一1e1_ e 111LJ12211_!-cos1IiSin, sinqk E21H2COSJ2(24)(24)从式(2424)中得到了第一层的特征矩阵:-昌iM = cos1sin1Mi1_i pin r cos1(25)(25)H 二Y(k Eo)H2“2(l E2).(26)(26)考虑到导纳定义有如式(2626)

12、的关系,则可对式(2424)进一步化简:(k EO)Y=-cos1Ii1si nsinn1cos1B B令 fcjfcj 为为膜系的特征方程,则有关系式:(27)(27)精品文档精品文档(28)(28)精品文档对比式(2424)等号左边的形式,由导纳定义可得整个单层薄膜的组合导纳:(29)(29)从而由式(1515)可求得单层薄膜的反射、透射系数。至此完成了第一步,即从薄膜到介质面的等效推导。将将单层得到的结论推 广到整个介质空间可得:| COS&jM厂J_iJsinJi . sinYJJcosJ(30)(30)2d =J-NjdjcosJ(31)(31)(32)(32)B cos1上

13、5丄si n1nI1Incos2-B1d =M7(33)(33)(34)(34)(35)(35)精品文档精品文档式(3030)为介质第 j j 层的特征矩阵,需要注意的是特征矩阵的行列式值为1 1。由式(3232)即可得到整个介质的传输矩阵。至此,完成了多层介质传输矩阵的建模过程。值得一提的是, 在讨论单层薄膜时, 得到单层薄膜的反射率后, 若对薄膜的 光学厚度 H H (H=ndH=nd,n n 为薄膜折射率,d d 为薄膜实际厚度)求导,可得如图 6 6 的结 果。从结果中我们可以看出,在厚度为时,反射率根据折射率的不同可达到最4 4大或最小值。图 6 6 反射率与光学厚度的关系三、 传输

14、矩阵法的应用举例传输矩阵法的典型应用是对多层周期性交替排列介质的分析,具有这样结构的器件实例有:光子晶体、光栅、量子阱结构、DBRDBR 吉构器件等。具体应用过程请参见文献传输矩阵法分析一维光子晶体的传光特性四、小结(1 1)传输矩阵法概念:将麦克斯韦方程组转换为传输矩阵的形式,应用传输矩精品文档精品文档阵分析的计算方法。(2)(2) 传输矩阵:形式为每层特征矩阵的乘积。(3)(3) 典型应用:多层周期性交替排列介质。(4)(4) 解决问题:传光特性(R R、T T)、场强度(E E、H)H)o o注意:(3 3)、( 4 4)共同决定传输矩阵法对所研究问题的适用性。(5)(5) 重要结论:导纳 N N、折射率定义 n n,光波段下,导纳无意义,它就是折射率。(6)(6) 传输矩阵的推导(薄膜光学理论)是繁琐的,但实际应用中可忽略推导, 直接应用结论式(3030) ( 3535)o(7)(7) 用传输矩阵法求解问题过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论