初一代数易错练习(1)_第1页
初一代数易错练习(1)_第2页
初一代数易错练习(1)_第3页
初一代数易错练习(1)_第4页
初一代数易错练习(1)_第5页
免费预览已结束,剩余63页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初中数学总复习资料(条理清晰)1. 已知数轴上的A点到原点的距离为2,那么数轴上到A点距离是3的点表示的数为2. 个数的立方等于它本身,这个数是3 用代数式表示:每间上衣a元,涨价10%f再降价10%后的售价 低,变高,不变)5. 青山镇水泥厂以每年产量增长10%的速度发展,如果第一年的产量为a,则第 三年的产量为6. 已知口 a=-7.4 .一艘轮船从A港到B港的速度为a从B港到A港的速度为b,则此轮船全程 的平均速度为04,亠1,则代数式by x的值为b 3 y 217ay4by若 |x|= -x,且 x=1,贝U x=8.9.为x若 |x|-1|+|y+2|=0则-=。已知 a+b+c=

2、0,abc0,则 x=0+lbi + Lcl+c| 根据 a,b,c 不同取值,x 的值 a b c abc0+ |m=0,(2) -2aby卅与4ab3 是同类项.10. 如果a+b0,那么a,b,-a,-b的大小关系为11. 已知 m X、y 满足:(1)(X-5)2 求代数式:(2x2 -3xy +6y2)-m(3x2-xy +9y2)的值;-+-(-2.4)=化简-(+2.4)= 如果|a-3|-3+a=0则a的取值范围是已知2x3,化简 |x+2|x 3|=_一个数的相反数的绝对值与这个数的绝对值的相反数的关系12.14.13.15 . 式_ 在有理数,绝对值最小的数是 ,在负整数中

3、,绝对值最小的数是 由四舍五入得到的近似数17.0,其真值不可能是()A 17.02 B 16.99 C 17.0499 D16.49 一家商店将某种服装按成本价提高 40%f标价,又以8折(即按标准的80%优惠卖出,结果每作服装仍可获利15元,则这种服装每件的成本是 已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水 观察下面的每列数,按某种规律在横线上填上适当的数,并说明你的理由。(1) -23,-18,-13, (2) 2土(2) 8, 16,32, 64,20. 简便计算(1)21.22.23.24.25.26.(+55)+(-81)+(+15)+(-

4、19)(+6.1)+(-3.7)-(+4.9)- (-1.8)(-123) X (-4)+125 X (-5)-127X (-4)-5X 75已知 2x-y=3,那么 1-4x+2y=已知 |a|=5,|b|=7 且 |a-b|=b-a,2a-3b 的值为。1-2+3-4+5-6+7-8+99-100=-2-22-23-24-25-218-219+220=1+2+3+4+5+6+100=m,则 2+4+6+100=.设y=ax5+bx3+cx-5,其中a,b,c为常数,已知当x= -1时,y=7,求当x=-1时,y=.27. 设a为一个二位数,b为一个三位数,则a放在b的左边得一个五位数,则此

5、五位数是28. 已知 31 = 3,32 = 9,33 = 27,34 = 81,35 = 243,36 = 729,37 = 2187,推测 320 的个位数字是。29. 在1: 50 000 000的地图上两地的距离是1.3厘米,用科学计数法表示两地的实际距离为 ()千米。30. 若 |ab-2|+(b-1)2=0,求代数式+1+1+1的值。ab (a + 1)(b+1) (a + 2)(b +2)(a +2002)(2002)31. 我国著名的数学家华罗庚曾说过:“数形结合百般好, 割裂分家万事非。”如图6-2,在边长为1的正方形纸板上, 依次贴上面积为1 , 1, 1,丄的长方形彩色纸

6、片(2482n为大于1的整数),请你用“数形结合”的思想,依数形变 化的规律,计算丄+丄+丄+丄=.2 4 82n32. 如图,大正方形是由两个小正方形和两个长方形拼成 的.(1)请你用两个不同形式的代数式(需简化)表示这个大转关系的面积; 由(1)可得到关于a、b的关系,利用得到的这关 系 计 算咒2).6 1切.6 92的值.9个 等 式4.32才2咒4.333.观察月历 下列问题请你试一试。你一定行。请 你探究:有阴影方框中的9个数与方框中间的数有什么关系吗?这个关系对任意一个这样的方框都成立吗?日-一一二二三三四五六12345678910111213141516171819202122

7、232425262728293031答案仅作参考!1. -5, -1,1, 5o提示:A点可能为-2, 2o到2距离为3的点为-1, 5,故到 -2距离为3的点为1, -5o2.3答案-1, 1, 0。提示:一个数的立方等于它本身的数有三个。 变低。提示:涨价10%f再降价10%后的售价为100a.型o提示:设路程为S,则总时间为t= .平均速度为=空,不是吐。 型.提示:a(1+10%)(1+10%)=空.不是b更。t a+b 2i00提示:a=4b,x=1y,带入得虫16132、7ay4by 16-1;提示:x= - ,x= 1,但由 |x|= -x 得 x0,b0,cbc当 a0,b0,

8、c0,+也| + 也+诞1 =1+1-1-1=0;当|a| |b| |c| label ac b c abcx= + +* =1-1-1+1=0oabc abca-bb-a.提示:由a+b0,|a|b然后在数轴上将其表示出来。 44,提示:x=5,m=0,y=2.-2.4;提示:数负号的个数,负号为奇数个则为负数,负号为偶数-2.4,个则为正数。第10页共51页提示:|a-3|=3-a提示:x+20,x-3a.b=7,a=5;或者 b=-5,a=-7.23 - 50;提示:每相邻两项和为-1 024. 2。提示:后一项减前一项总是等于前一项。220-219=219 ; 219-218=218.

9、22-2=2.25 . 巴 +25.提示:设 1+3+5+99=x,贝 U 2+4+6+100=x+50.即-m 一亠 C 一 m 一_ _ _ _ _- 2 2-17 提示:当 x= -1 时,-a-b-c= 7+5= 12. x= -1 时,y= -(-a-b-c)-5=-17. 1000a+b提示:相当于a的后面加了 3个零。所以结果是1000a+b.1。提示:3的n次幕循环周期是4。所以320与34的个位数字相同。6.5X 102.提示:1.3X 50 000 000=6.5X 107 厘米。 解得 a=2,b=11 - 1 +p +2002)(2002)2x+50=m,x=匸-25,

10、 2+4+6+100=x+50=二 +2526.27.28.2930丄 +: + :ab1 (1)(b+1)1 (a+2)(b+2)=+ + +卡 23 3*4 4 咒52003X2004=1+2003 2 3 3 4 4 52003 2004= 2004111提示:,从而引起连锁反应。n (n +1) n n 十131.1-丄。提示:从图中可看出。剩下的一小块面积总是等于等式左边最后一2n块的面积。即丄=1-丄。1+丄=1-丄一 224432.(1) 图中大正方形的面积等于(a+b)2=a2+b2+2ab2 2 2(2) 4.321 + 2X4.321X0.679 +0.679 =(4.32

11、1+0.679)=25和中间方框在同一直线且相邻的两方框的和是中间方框的2倍。这个关系33.对任意一个这样的方框都成立。(7)x= -11.积为负数,那么负因数个数是1个.1.绝对值等于本身的数是二. 填空题若1 -a =a-1,则a的取值范围是: 式子3-5 |x |的最值是.在数轴上的A、B两点分别表示的数为 是.水平数轴上的一个数表示的点向右平移是.在数轴上的A、B两点分别表示的数为-1和-15,则线段AB的中点表示的数6个单位长度得到它的相反数,这个数5和7,将A、B两点同时向左平移相第一章有理数易错题练习一. 判断a与-a必有一个是负数.在数轴上,与原点0相距5个单位长度的点所表示的

12、数是 5.在数轴上,A点表示+ 1,与A点距离3个单位长度的点所表示的数是 4.在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6.绝对值小于4.5而大于3的整数是3、4.如果-x=- (-11),那么 如果四个有理数相乘, 若 a =0,则 a =0.b同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移 个单位长度.;如果 |a+b I =-a-b,已知 |a | =5,|b | =3 |a+b | =a+b,则 a-b 的值为则a-b的值为.化简-| n3 | =.如果av bv0,那么.1 ab1在数轴上表示数-11的点和表示 巧丄的点之间的距离为:.

13、32(10) a - =-1,贝U a、b 的关系是.(11) 若 a v0,b v0,则 ac0.bc(12) 个数的倒数的绝对值等于这个数的相反数,这个数是三. 解答题已知a、b互为倒数,-c与d互为相反数,且|x | =4求2ab-2c+d+-的值.2 3数a、b在数轴上的对应点如图,化简:|a-b | + |b-a | + |b I- |a- |a |. Ia -1已知 |a+5 I =1, |b-2 I =3,求 a-b 的值. 求a- b的值.若|a|=4, |b|=2,且|a+b|=a+ b,把下列各式先改写成省略括号的和的形式,再求出各式的值.(-7)- (-4)- (+ 9)

14、 + (+ 2)- (-5);(-5) - (+ 7)- (-6) + 4.改错(用红笔,只改动横线上的部分):和-4a的大小 已知 5.0362=25.36,那么 50.362=253.6, 0.050362=0.02536; 已知 7.4273=409.7,那么 74.273=4097, 0.074273=0.04097; 已知 3.412=11.63,那么(34.1)2=116300; 近似数2.40X104精确到百分位,它的有效数字是33 已知 5.495=165.9, x =0.0001659,则 x=0.5495.比较4a在交换季节之际,商家将两种商品同时售出,甲商品售价2, 4;

15、1500元,盈利25%,乙商品售亏了多少元?价1500元,但亏损25%,问:商家是盈利还是亏本 ?盈利,盈了多少?亏本,若 X、y是有理数,且 |x|-x=0,|y|+y=0,|y|x|,化简 |x|-|y|-|x+y|.已知abcdM0试说明ac、-ad、be、bd中至少有一个取正值,并且至少有一个取负值(11)已知 a0,b0,判断(a+b)(c-b)和(a+b)(b-c)的大小.(12)已知:1+2+3+33=17X 33,计算 1-3+2-6+3-9+4- 12+31 -93+32-96+33-99 的值.四. 计算下列各题:(-42.75) (X7.36)-(-72.64) (+4X

16、.75)1一a1_331 344咗旳上1999?I 3丿3 f 1、 +4000-中丨 T-4 I 2丿226一 x1.43-0.57x(-)(6) (5)(6)()3352X 2 (-3)2 -2 -(-2)(7) 911 X18 -15 X2WX5 (9)14-(1-0.5)18(11) (x2)3 +3X23有理数易错题练习.多种情况的问题(考虑问题要全面)(1) 已知一个数的绝对值是3,这个数为此题用符号表示:已知X = 3,则x=;-X = 5,则 x=(2) 绝对值不大于4的负整数是(3) 绝对值小于4.5而大于3的整数是(4) 在数轴上,与原点相距5个单位长度的点所表示的数是(5

17、) 在数轴上,A点表示+ 1,与A点距离3个单位长度的点所表示的数是 平方得21的数是;此题用符号表示:已知xJ?1,则x=44若|a|=|b| ,则a,b的关系是(8)若 |a|=4 , |b|=2,且 |a + b|=a + b,求 a b 的值.特值法帮你解决含字母的问题 (此方法只适用于选择、填空)有理数中的字母表示 做出正确的选择正数,从三类数中各取12个特值代入检验, 0(1)若a是负数,贝U aa;-是一个数;;若X = X,则x满足;若 x=-x.(2)已知X = -X,则x满足 x满足;若a V 2,化简Ia- 2 = _有理数a、b在数轴上的对应的位置如图所示: 则(abV

18、 11 *I-10 1A . a + b 0; C . a b = 0 D(4)如果a、b互为倒数,c、d互为相反数,且.ab0 科=3 ,则代数式2ab- (c+d)(5)若ab半0,则的值为;(注意0没有倒数,不能做除数)+m=。第8页共51页在有理数的乘除乘方中字母带入的数多为1, 0, -1,进行检验(6) 个数的平方是1,则这个数为2;用符号表示为:若x = 1,则x=一个数的立方是-1,则这个数为倒数等于它自身的数为三.一些易错的概念(1)在有理数集合里, 绝对值最小的有理数.最大的负数,最小的正数,在数轴的原点左侧且到原点的距离等于 6个单位长度的点所表示的数的绝 对值是. 若|

19、a-1| + |b+2|=0,贝U a=;b=;(属于“ 0+0=0” 型)C.( X) 2+2 D. x2+1a*b= ab,如 3*2= 32 =9,则(-)*3=()2判断:(注意0的问题)0除以任何数都得0;(任何一个数的平方都是正数,)3 a的倒数是一.(a两个相反的数相除商为-1.)0除以任何数都得0.有理数a的平方与它的立方相等,那么 a= 1(4)下列代数式中,值一定是正数的是()A. X2B.| x+1|(5)现规定一种新运算“ * :四.比较大小-1-3(-4)-3.14五. 易错计算 3 63-1.53 X 0.75 + 0.53 X 3.4X 0.754-22 - (1

20、-1 X 0.2)5(3+-412-)X( - 60)6130(-1严J严六.应用题1.某人用400元购买了 8套儿童服装,准备以一定价格出售,如果以每套儿童 服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,-3,+2,+1,-2,-1,0,-2 .(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?2.某食品厂从生产的袋装食品中抽出样品 20袋,检测每袋的质量是否符合标准, 超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)-5-20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克?

21、若每袋标准质量 为450克,则抽样检测的总质量是多少?1. 填空:当a.时,a与a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是(3) 在数轴上,A点表示+ 1,与A点距离3个单位长度的点所表示的数是(4) 在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是.2. 用“有”、“没有”填空:在有理数集合里, 绝对值最小的有理数.最大的负数,最小的正数,第68页共51页3. 用“都是”、“都不是”、“不都是”填空:(1)所有的整数负整数;(2)小学里学过的数正数;(3)带有“ + ”号的数正数;(4)有理数的绝对值正数;若|a| + |b|=0,则 a

22、, b零;(6)比负数大的数正数.4. 用“一定”、“不一定”、“一定不”填空:(1) - a, 是负数;(2) 当 ab 时, 有 |a| |b| ;大于距原点(3)在数轴上的任意两点,距原点较近的点所表示的数 较远的点所表示的数;|x| + |y|,是正数;(5) 一个数大于它的相反数;(6) 个数/小于或等于它的绝对值;5. 把下列各数从小到大,用“V”号连接:,码和冷(-2.9), -|- 2外4 也2说较犬先G E込 66 4S 7749=43 ”49解因为卜h厂豆jpV斎而玄”连接起来.8填空:(1) 如果一x= ( 11),那么 x=(2) 绝对值不大于4的负整数是(3) 绝对值

23、小于4. 5而大于3的整数是9. 根据所给的条件列出代数式: (1)a , b两数之和除a, b两数绝对值之和;a与b的相反数的和乘以a, b两数差的绝对值;(3) 一个分数的分母是X,分子比分母的相反数大6;X , y两数和的相反数乘以X, y两数和的绝对值.10. 代数式一|x|的意义是什么?11. 用适当的符号( 、0,且|a| |b|,那么a.12.写出绝对值不大于2的整数.13.由|x|=a能推出x=a吗?14.由|a|=|b| 定能得出a=b吗?15.绝对值小于5的偶数是几?16.用代数式表示:比a的相反数大11的数.17.用语言叙述代数式:a 3.18.算式3+ 5 7 + 2

24、9如何读?19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(7) ( 4) ( + 9) + ( + 2) ( 5);(2)(5) ( + 7) ( 6) + 4.20.判断下列各题是否计算正确:如有错误请加以改正;2 2解-|= -10-?(2)5 5|=10 ;右21. 用适当的符号( 、 )填空:(1)若b为负数,则a+ ba;若 a0, bv0,则a b0;若a为负数,则3.22. 若a为有理数,求a的相反数与a的绝对值的和.23. 若|a|=4 , |b|=2,且|a + b|=a +b,求 a b 的值.24. 列式并计算:一7与一15的绝对值的和.25 用简便方

25、法计算:1?3-5-(-95) + 4石)+7526.用“都”、“不都”、“都不”填空:如果abM0,那么a, b为零;如果ab0,且a+ b0,那么a, b为正数;如果abv0,且a+ bv0,那么a, b为负数;如果ab=0,且a+ b=0,那么 a, b27.填空:(l)a, b为有理数J且学山则孑是b且b护山则建是-b(2)日,b为有理数,a , b为有理数,则ab是a , b互为相反数,则(a + b)a是 28.填空: (1)如果四个有理数相乘,积为负数,那么负因数个数是(2)若汗0,且卜0,则b满足条件是 b29.用简便方法计算:-亡碍4(-32);30 .比较4a和4a的大小:

26、31.计算下列各题:6 -6)-(-二件辨晁h2 2-X1.43-O.57X(-)-15X 12-6X 5.33.己知北0,求回+也+32.有理斷曲绝对值相峯求船值. ba b ab34 下列叙述是否正确?若不正确,改正过来. 平方等于16的数是( 4)2 ;(2)( 2)3的相反数是一23;(3)把(7 * (-5) * (-一(-写成乘方的形式是-屮1L J1001(2)2 X32.35.计算下列各题;(1) 0. 752;36已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)( 1) n + 2是负数;(2)( 1)2 n + 1是负数;(3)( 1)n + ( 1)n +

27、1是零.37.下列各题中的横线处所填写的内容是否正确?若有误,改正过来.(1)有理数a的四次幕是正数,那么a的奇数次幂是负数; 有理数a与它的立方相等,那么a=1;有理数a的平方与它的立方相等,那么a=0;若|a|=3,那么a3=9; 若x2=9,且x0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方是正数;(2) 个负数的偶次幕大于这个数的相反数;(3)小于1的数的平方小于原数;(4) 一个数的立方小于它的平方.39.计算下列各题:(1)(3X 2)3 + 3X 23;(2) 24 ( 2) - 4; (3) 2-( 4)-2 ;A.第三章下列说法正确的是(

28、 的指数是03是一次单项式整式加减易做易错题选)B.没有系数D. 3是单项式C.分析:正确答案应选D。这道题主要是考查学生对单项式的次数和系数的理 解。选A或B的同学忽略了 的指数或系数1都可以省略不写,选C的同学则 没有理解单项式的次数是指字母的指数。例2多项式的次数是( )A. 15 次B. 6 次C. 5 次D. 4 次分析:易错答A、B、D。这是由于没有理解多项式的次数的意义造成的。 正确答案应选Co例3下列式子中正确的是(A.)B.C.D.分析:易错答C。许多同学做题时由于马虎,看见字母相同就误以为是同类 项,轻易地就上当,学习中务必要引起重视。正确答案选例4把多项式按 的降幕排列后

29、,它的第三项为(A. - 4B.C.D.分析:易错答B和D。选B的同学是用加法交换律按连同“符号”考虑在内,案应选Co例5整式A.口,”的降幕排列时没有 选 D的同学则完全没有理解降幕排列的意义。正确答去括号应为()B.D.D、C。原因有:(1)没有正确理解去括号法则;(2)没C.分析:易错答A、 有正确运用去括号的顺序是从里到外,从小括号到中括号。例6当取()时,多项式中不含项A. 0B.C.D.分析:这道题首先要对同类项作出正确的判断,然后进行合并。合并后不含项(即缺 项)的意义是 项的系数为0,从而正确求解。正确答案应选 Co例7若A与B都是二次多项式,则A B: (1) 一定是二次式;

30、(2)可能 是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。上述结 论中,不正确的有()A. 2个B. 3个C. 4个D. 5个分析:易错答A、C、D。解这道题时,尽量从每一个结论的反面入手。如 果能够举出反例即可说明原结论不成立,从而得以正确的求解。例8在的括号内填入的代数式是( )A.B.C.D.分析:易错答D。添后一个括号里的代数式时,括号前添的是“”号,那 这两项都要变号,正确的是 A。例9求加上等于的多项式是多少?错解:这道题解错的原因在哪里呢?)看成一个整体,而分析:错误的原因在第一步,它没有把减数( 是拆开来解。正解:答:这个多项式是化简原式例10错解:分析

31、:正解:错误的原因在第一步应用乘法分配律时, 原式这一项漏乘了 3。巩固练习1. 下列整式中,不是同类项的是A.C. 与2. 下列式子中,二次三项式是(A.( )B. 1 与一2D.B.C.D.3.下列说法正确的是(A.C.4.的项是是三次多项式合并同类项得(B. 0B.D.是多项式都是整式A.5.下列运算正确的是(A.)C.D.B.C.D.6.的相反数是A.B.C.D.7. 一个多项式减去等于,求这个多项式。参考答案2. C1. D4. A5. A 6. C 7.3. B初一数学因式分解易错题1.- C-2| 原式=-(36x2 -y2提取公因式后,括号里能分解的要继续分解。1 原式=-xy

32、( 36x2-y 2)2例 1. 18x3y- 7xy3错解分析正解2)例2.错解:分析:正解:原式=3mn (m-2n)( m-2n)=3mn(m-2n)21例 3. 2x+x+ 一错解:原式=-(一x+一x+1)4 24分析:系数为2的x提出公因数x的系数应变为4。1正解:原式=(8x+4x+1)4= -(12x +1)14+ x+ 原式=-(一 X2 +丄 X +1)4 44=(X +1)4 2寸后,系数变为8,并非1;同理,系数为1的例 4. X2错解:分析正解原式=如+2)-4= (x-228并非4的平方,且完全平方公式中b的系数一定为正数。原式=(x +2 2 4 (x+2)=(x

33、+2) (x + 2)-4】=(x+2) (x2)例 7.(7m +9n 2 -(5m -3n f错解:原式=(7m +9n )-(5m -3n f分析:正解:1=-xy (6x+y)( 6x-y )3m2n (m-2n) L6mn2(m-2n)】原式=3mn (m-2n)( m-2n)相同的公因式要写成幕的形式。系数为1的x提出公因数丄后,系数变为4,并非一。1,44原式=(4x2 +4x +1)42=(2x +1)4例 5.6x(x-y 2+3(y-xj错解:原式=3 ty-x2+(y-x)+2x分析:3(y -X3表示三个(y-x )相乘,故括号中(y-x)2与(y-x)之间应用乘号而非

34、加号。正解:原式=6x(y -x2+(y - xf=3(y -X 2 2x +(y -X 卩=3(y - X 2(X + y )例 6.(x+2 2 -4x -8错解:= (2m+12n 2题目中两二次单项式的底数不同,不可直接加减。 原式=(7m +9n )+ (5m _3n+9n )-(5n -3n )= (12m +6n )(2m +12n )=12 (2m+n) (m+6n)4_1原式=(a2 2 -1=(a2+1) (a21) 分解因式时应注意是否化到最简。 原式=(a2 2 -1=(a2+1) (a21)=(a2+1) (a+1) (a 1)例 9.(x+y2 -4(x + y-1

35、 )错解:分析:正解:分析:正解:例& a错解:分析:正解:原式=(x+y)(x+y 4)题目中两单项式底数不同,不可直接加减。原式= (x+ yf -4(x + y)+4=(x + y - 2 2例 10.16x4 8x2 +1错解:分析:正解:原式=(4x2-1 2分解因式时应注意是否化到最简。原式=(4x2 -1 2=(2x +1 I2x -1= (2x +12(2x -1 2因式分解错题例 1.81(a-b)2-16(a+b)2 错解:81(a-b)2-16(a+b)=(a-b)2( 81-16)=65( a-b) 281 (a-b )2-16 (a+b)2分析:做题前仔细分析题目,看

36、有没有公式,此题运用平方差公式 正解:=9=9(a-b) 2 4 (a+b) 2(a-b) +4 (a+b) 9(a-b) -4 (a+b)(9a-9b+4a+4b) (9a-9b-4a-4b )(13a-5b)(5a-13b)x4-x2例 2.x4-x2错解:(x2)2-x2分析:正解:(x2+x)( x2-x)括号里能继续分解的要继续分解x 4-x2(x2)2-x2(x2+x)( x2-x)=(x2+x) ( x+1) (x-1 )例 3.a4-2a2b2+b4 错解:a4-2a2b2+b4=(a2 ) 2-2 X a2b2+ (b2 ) 2=(a2+b2) 2分析:仔细看清题目,不难发现

37、这儿可以运用完全平方公式,括号里能继续分解的要继续分解正解:a4-2a2b2+b4(a2)2-2 X a2b2+ (b2)2(a2+b2)2=(a-b) 2 (a+b)2例 4. ( a2-a )2 - (a-1 ) 2错解:(a2-a )2 - ( a-1 ) 2=(a2-a) + (a-1 ) (a2-a) - (a-1 )=(a2-a+a-1 )( a2-a-a-1 )=(a2-1)( a2-2a-1 )分析:做题前仔细分析题目,看有没有公式,此题运用平方差公式,去括号要 变号,括号里能继续分解的要继续分解正解:(a2-a )2-( a-1 ) 2=(a2-a) + (a-1 ) (a2

38、-a) - (a-1 )=(a2-a+a-1 )( a2-a-a-1 )=(a2-1)( a2-2a+1 )例5.错解:=(a+1 )( a-1 ) 31x2y3-2 x 2+3xy22 11x2y3-2 x 2+3xy223=xy (x2y3x+y )22多项式中系数是分数时,通常把分数提取出来,使括号内各项的系数是整分析:数,还要注意分数的运算正解:1x2y32 x 2+3xy221=一 xy (x2y3-4x+6y)2例 6. -15a 2b3+6a2b2- 3a2b错解:-15a2b3+6a2b2-3a2b二(15a2b3-6a2b2+3a2b)-(3a2bX 5b2-3a2bx 2b

39、+3a2bx 1)=-3a 2b (5b2-2b)分析:多项式首项是负的,一般要提出负号,如果提取的公因式与多项式中的某 项相同,那么提取后多项式中的这一项剩下“1”,结果中的“ 1”不能漏些正解:-15a2b3+6a2b2-3a2b二(15a2b3-6a2b2+3a2b)-(3a2bX 5b2-3a2bx 2b+3a2bx 1)=-3a 2b (5b2-2b+1) 例 7. n (a-2) +m (2-a) 错解:m2 (a-2) +m (2-a)=m 2 (a-2) -m (a-2)=(a-2)( n2-m)分析:当多项式中有相同的整体(多项式)时,不要把它拆开,提取公因式是把 它整体提出

40、来,有的还需要作适当变形,括号里能继续分解的要继续分解 正解:m2 (a-2) +m( 2-a)2 (a-2) -m (a-2) (a-2)(n2-m)(a-2) 例 8.a2-16 错解:a2-16=m(m-1)(a+4)(a+4)分析:要熟练的掌握平方差公式正解:a2-16=(a-4)(a+4)-4x 2+9例 9.-4x2+9错解:分析:正解:(4x2+32)加括号要变符号-4x 2+9=-(2x) 2-32=-(2x+3 )(2x-3)(3-2x)2-4 n2=(3+2x)例 10.( m+n错解:(m+n=(m+n2-4 n22X 1-4 X n2(x+y)分析:正解:2 (1-n)

41、做题前仔细分析题目,看有没有公式,此题运用平方差公式(m+n 2-4n2(m+n 2- (2n2 )(m+n +2n (m+n -2n=m+n+2n m+n-2n=(m+3n (m-n)因式分解错题例 1. a2-6a+9 错解:a2-6a+9=a 2-2 X3Xa+32=(a+3)2分析:完全平方公式括号里的符号根据2倍多项式的符号来定正解:a2-6a+9=a 2-2 X3Xa+32=(a-3) 2 例 2. 4m2+n2-4mn 错解:4n+ n2-4mn=(2m+n)2分析:要先将位置调换,才能再利用完全平方公式正解:4n+ n2-4mn=4m 2-4 mn+r2(2m 2-2 X 2m

42、n+t2=(2m-n) 2例 3. (a+2b) 2-10 (a+2b) +25 错解:(a+2b) 2-10 (a+2b) +25=(a+2b) 2-10 (a+2b) +52=(a+2b+5)2分析:要把a+2b看成一个整体,再运用完全平方公式 正解:(a+2b) 2-10 (a+2b) +25=(a+2b) 2-2 X 5X( a+2b) +52=(a+2b-5) 2例 4.2x2-32错解:2x2-32=2(x2-16)分析:要先提取2,在运用平方差公式括号里能继续分解的要继续分解正解:2x2-32=2 (X -16)=2 ( x2+4)( x2-4 )=2 (X2+4)(X+2 )(

43、 X-2)例 5. ( X2-X)2 - ( X-1 ) 2错解:(X2-X)2 - (X-1 ) 2=(x2-x) + ( x-1 ) (x2-x) - (x-1 )=(X2-X+X-1 )( X2-X-X-1 )=(x2-1)( x2-2x-1 )分析:做题前仔细分析题目,看有没有公式,此题运用平方差公式,去括号要 变号,括号里能继续分解的要继续分解正解:(x2-x) 2 - ( X-1 ) 2=(X2-X)+ (X-1 ) (X2-X)- (X-1 )=(X2-X+X-1 )( X2-X-X-1 )=(x2-1)( x2-2x+1 )=(x+1 )( X-1 ) 3例 6. -2a 2b

44、2+ab3+a3b错解:-2a2b2+ab3+a3b=-ab(-2ab+b2+a2)=-ab(a-b)2分析:先提公因式才能再用完全平方公式正解:-2a2b2+ab3+a3b二(2a2b2-ab3-a3b )=-(abx 2ab-ab X b2-ab X a2)(2ab-b2-a 2)=ab(b2+a2-2ab)=ab例 7. 24a错解:分析:正解:(a-b) 2(a-b) 2-18(a-b) 324a (a-b) 2-18(a-b) 3(a-b )224a-18(a-b)(a-b) 2(24a-18a+18b)把a-b看做一个整体再继续分解=6=624a (a-b)2-18 a-b )(a

45、-b) 2X 4a-6 (a-b) 2X 3 (a-b)(a-b )24a-3 (a-b)(a-b) 2 (4a-3a+3b)(a-b) 2 (a+3b)例8.错解:(x-1 )(x-3 ) +1(x-1 )(x-3 ) +1=-ab=x2+4x+3+1=x 2+4x+4=(x+2) 2分析:正解:无法直接分解时,可先乘开再分解(x-1 )(x-3) +12-4x+3+1 2-4x+4(x-2 )2(a-b )3+8 (b-a)例9.2错解:2 (a-b) 3+8 (b-a) =2(b-a)3+8 (b-a)=2(b-a) (b-a)2+4分析:要先找出公因式再进行因式分解正解:2 (a-b)

46、=2(a-b)=2 (a-b)=2(a-b)=2(a-b)例10.(x+y)2错解:(x+y):3+8 (b-a)3-8 ( a-b)x( a-b) 2-2 (a-b)(a-b )2-4(a-b+2) (a-b-2)-4 (x+y-1 )2-4 (x+y-1 )=(x+y)2-(4x-4y+4)=(x2+2xy+y2)-(4x-4y+4)分析:无法直接分解时,要仔细观察,找出特点,再进行分解正解:(x+y)2-4 (x+y-1 )=(x+y)2-4 (x+y) +4=(x+y-2 ) 2因式分解错题例 1. -8m+2n3 错解:-8m+2m3=-2mX 4+(-2m)x( -m2)=-2m(4- m2)分析:这道题错在于没有把它继续分解完, 很多同学都疏忽大意了,在完成到这 一步时都认为已经做完,便不再仔细审题了正解:-8m+2m3=-2mX 4+(-2m)x( -m2)=-2m(4- m2)=-2m(2+ m)( 2- m )例 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论