




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、优化方法上机大作业院 系:化工与环境生命学部 姓 名:李翔宇学 号: 31607007 指导教师 :肖现涛第一题:编写程序求解下述问题min y(z) = (1 xi)2 + 100(x2 xj)2.初始点取/ = 0,精度取s = le - 4,步长由Armijo线捜索生成,方向 分别由下列方法生成:最速下降法BFGS方法共辄梯度法1.最速下降法源程序如下:function x_star = ZSXJ (x0,eps) gk = grad(xO);res = norm(g k);k = 0;while res eps & k f0 + 0.0001*ak*slope ak = ak/2;xk
2、 = x0 + ak*dk;f1 = fun(xk);endk = k+1;x0 = xk;gk = grad(xk);res = norm(gk);fprintf(-The %d-th iter, the residual is %fn,k,res);end x_star = xk; end function f = fun(x)f = (1-x(1)A2 + 100*以(2)咲(1)八2)八2;end function g = grad(x) g = zeros(2,1);g(1)=2*(x(1)-1)+400*x(1)*(x(1)A2-x(2); g(2) = 200*(x(2)-x(1
3、)A2);end 运行结果: x0=0,0; esp=1e-4; xk= ZSXJ(x0,eps)-The 1-th iter, the residual is 13.372079 -The 2-th iter, the residual is 12.079876 -The 3-th iter, the residual is 11.054105 -The 9144-th iter, the residual is 0.000105 -The 9145-th iter, the residual is 0.000102 -The 9146-th iter, the residual is 0.
4、000100 xk =0.99990.9998MATLAB 截屏: xO= Qj 01 : esp=le-4: xk=ZSXJ txOj eps)一 TheI-thit er?theresidualis13.372075一 The2-thit er jtheresidualis12,07&876一 Iht3-thit亡theresidualis11. 054105一 TheWhit er jtheresidualis10. 421221一一Ih?5-thit ertheresidualis10. 020369Tl_ -:丄一一丄 ll_ -I; Ji1J _一 The9142-thiter,t
5、heresidualis0.000111- The9143-thiterjtheresidualis0.000108一一 The9144-thiterthe匸esidualisD. 000105一-The9145-thiterfth?residualis0. 000102一 Th?9143-thiter,theresidualis0. 0001000.99990.99932. 牛顿法源程序如下:function x_star = NEWTON (x0,eps) gk = grad(x0);bk = grad2(xO)A(-1);res = norm(gk);k = 0;while res ep
6、s & k xO=O,O;eps=1e-4; xk= NEWTON (x0,eps)-The 1-th iter, the residual is 447.213595-The 2-th iter, the residual is 0.000000xk =1.00001.0000MATALB 截屏; x0= 0, DY : esp=1; xkNEirONtaO, eps)The 1-th iter, the residual is 447,213595 一The 2-th iter, the residual is 0.OOQOQOxk =L 0000|L 00003. BFGS 方法源程序如
7、下:function x_star = Bfgs(x0,eps) g0 = grad(x0);gk=g0;res = norm(gk);Hk=eye(2);k = 0;while res eps & k f0 + 0.1*ak*slopeak = ak/2;xk = x0 + ak*dk;f1 = fun(xk);endk = k+1;fa0=xk-x0;x0 = xk;g0=gk;gk = grad(xk); y0=gk-g0;Hk=(eye(2)-fa0*(y0)/(fa0)*(y0)*(eye(2)- (y0)*(fa0)/(fa0)*(y0)+(fa0*(fa0)/(fa0)*(y0)
8、;res = norm(gk);fprintf(-The %d-th iter, the residual is %fn,k,res); end x_star = xk;end function f=fun(x)f=(1-x(1)A2 + 100*債(2)咲(1)八2)八2;endfunction g = grad(x)g = zeros(2,1);g(1)=2*(x(1)-1)+400*x(1)*(x(1)A2-x(2);g(2) = 200*(x(2)-x(1)A2);end运行结果: x0=0,0; esp=1e-4; xk= Bfgs(x0,eps)-The 1-th iter, th
9、e residual is 3.271712-The 2-th iter, the residual is 2.381565-The 3-th iter, the residual is 3.448742-The 1516-th iter, the residual is 0.000368 -The 1517-th iter, the residual is 0.000099 xk =1.00011.0002MATLAB截屏:x0= 0, 0J :esp=le-4: xk=Bfgs (xOj eps)一 The1thit erjtheresidualis3. 271712一 The2thit
10、erjtheresidualis2.381565一 The3thittheresidualis3.448742一The4thit er,theresidualis3, 162431 The5thit erjtheresidualis2. 989084The 1515-thiter,theresidualis0.000108The 1516-thiter,theresidualis0.000368The 1517-thiter,theresidualis0. 0000991.00011.00024. 共轭梯度法源程序如下:function x_star =Conj (x0,eps)gk = gr
11、ad(x0);res = norm(gk);k = 0;dk = -gk;while res eps & k f0 + 0.1*ak*slopeak = ak/2;xk = x0 + ak*dk;f1 = fun(xk);endd0=dk;g0=gk;k=k+1;xO=xk;gk=grad(xk);f=(norm(gk)/norm(gO)A2;res=norm(gk);dk=-gk+f*d0;fprintf(-The %d-th iter, the residual is %fn,k,res);endx_star = xk;endfunction f=fun(x)f=(1-x(1)A2+100
12、*(x(2)-x(1)A2)A2;endfunction g=grad(x)g=zeros(2,1);g(1)=400*x(1)A3-400*x(1)*x(2)+2*x(1)-2;g(2)=-200*x(1)A2+200*x(2);end运行结果: xO=O,O; eps=1e-4; xk=Conj(xO,eps)-The 1-th iter, the residual is 3.271712-The 2-th iter, the residual is 1.380542-The 3-th iter, the residual is 4.527780-The 4-th iter, the re
13、sidual is 0.850596-The 73-th iter, the residual is 0.001532 -The 74-th iter, the residual is 0.000402 -The 75-th iter, the residual is 0.000134 -The 76-th iter, the residual is 0.000057 xk =0.99990.9999MATLAB 截屏: ito= ot : esp=l*-4 : xk=Conj eps) Thel-thit efjtheresidualis3. 271712Ihe2-thit erjthere
14、sidualIS1. 3805423-thit ertheresidualIS4. 527780I he4-thit ertheresidualIS0.8505&6I he5-thit erjtheresidualis0.559005Tin 戶尺一+ Vii十戶t十Har 戶 uT Hit-alH QRR7J.il丄丄比U 3111丄 LBL,LILS丄Mth UUUUZJ一 The70-thiter,theresidualis0. 001423一 The71-thiter,theresidualis0. 002841-The72-thitertheresidualis0. 002945一 T
15、he73-thitetjtheresidualis0. 001532 Th?74-thiter,theresidualis0. 000403 The75-thittheresidualis0. 000134一 Iht76-thiter,ther*sidualis0.0000570.99990-9999第二题:编写程序利用增广拉格朗日方法求解下述问题初始点取= 0,精度取s= lc-4.解:目标函数文件fl.mfunction f=f1(x)f=4*x(1)-x(2)A2-12;等式约束函数文件hl.mfunction he=h1(x)he=25-x(1)A2-x(2)A2;不等式约束函数文件g
16、l.mfunction gi=g1(x)gi=10*x(1)-x(1)A2+10*x(2)-x(2)A2-34;目标函数的梯度文件 dfl.mfunction g=df1(x)g = 4, 2.0*x(2);等式约束(向量)函数的 Jacobi矩阵(转置)文件 dhl.mfunction dhe=dh1(x)dhe = -2*x(1), -2*x(2);不等式约束(向量)函数的 Jacobi矩阵(转置)文件 dg1.mfunction dgi=dg1(x)dgi = 10-2*x(1), 10-2*x(2);然后在Matlab命令窗口输入如下命令:x0=0,0;X,mu,lambda,outp
17、ut=multphr(f1,h1,g1,df1,dh1,dg1,x0);得到如下输出:x =4.898717426488211.00128197198571算法编程利用程序调用格式function x, mu, lambda, out put =mul t phr (furij hf, gf, dfun, dhfj dgf, xO) paxk=500;si gma=2* 0; etaz2. 0; thetazO* 8;k=0; ink=0;epsilon=le-4;x=xO; he-feval (hff x); gi=feval (gf x);n=length(K); 1=1 eng th (
18、he); nFlength(gi),rru=O l*ones(lj 1); lairbda=O l*ones(nA 1); btak=10; btaold=10;hile(btakepsilon & kepsilon if(k=2 & btak theta*btaold) sigeta+sigma, end foriDui)zmu(i)-sigina*he(i); endfor (i=l:nOlambda(i)zmax(0.0, lairbda(i)-signia*gi(i);endendk二k+1;btaold=btak;xO=x;endf=f eval (fun, x);output. f
19、ral=f; output. iter=k;output* inner_iter-ink;output,bta-btak;function x, val, k=bfgs (fun gfun, xO, varargin) maxk=500;rho=0. 55; sigmal=O. 4; epsi1onl = le5;k=0; n=length(xO);Bk=eye (n) ; %Bk=feval ( Hess , xO);while(kmaxk)gk=feval (gfun, xO, varargin : );if(norm(gk)epsilonl), break; enddk=-Bkgk;n=
20、0; ink=O;while(m20)亠newf=feval (fun, xO+rhoirFdk, varacrgin : ); oldf=feval (fun, xO, varargin : );i f (newf 0)Bk=Bk(Bk*sk*skJ *Bk)/(sk *Bk*sk)+(yk*ykJ )/(yk *sk); end k=k+l;xO=x;endval = f eval (fun, xO, v ar argin : );第三题:下载安装 CVXh http: 利用CVX编写代码求解下述问题nun1-22x1 4j*2subject to迟1 + 牝 一 1 0.工2 0利用CV
21、X编写代码求解下述问题min 3j:i X2 3帀S.t.2淤十念2 +3 W 2x + 2x2 + 3x3 0.1.解:将目标函数改写为向量形式:x*a*x-b*x程序代码:n=2;a=0.5,0;0,1;b=2 4;c=1 1;cvx_beginvariable x(n)minimize( x*a*x-b*x)subject toc * x =0cvx_end运算结果:Calling SDPT3 4.0: 7 variables, 3 equality constraintsFor improved efficiency, SDPT3 is solving the dual problem
22、.num. of constraints = 3dim. of socp var = 4, num. of socp blk = 1dim. of linear var = 3*SDPT3: Infeasible path-following algorithms*version predcorr gam expon scale_dataNT 1 0.000 1 0it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime0|0.000|0.000|8.0e-001|6.5e+000|3.1e+002| 1.000000e+001
23、0.000000e+000| 0:0:00| chol 1 11|1.000|0.987|4.3e-007|1.5e-001|1.6e+001| 9.043148e+000 -2.714056e-001| 0:0:01| chol 1 12|1.000|1.000|2.6e-007|7.6e-003|1.4e+000| 1.234938e+000 -5.011630e-002| 0:0:01| chol 1 13|1.000|1.000|2.4e-007|7.6e-004|3.0e-001| 4.166959e-0011.181563e-001| 0:0:01| chol4|0.892|0.8
24、77|6.4e-008|1.6e-004|5.2e-002| 2.773022e-0012.265122e-001| 0:0:01| chol5|1.000|1.000|1.0e-008|7.6e-006|1.5e-002| 2.579468e-0012.427203e-001| 0:0:01| chol6|0.905|0.904|3.1e-009|1.4e-006|2.3e-003| 2.511936e-0012.488619e-001| 0:0:01| chol7|1.000|1.000|6.1e-009|7.7e-008|6.6e-004| 2.503336e-0012.496718e-
25、001| 0:0:01| chol8|0.903|0.903|1.8e-009|1.5e-008|1.0e-004| 2.500507e-0012.499497e-001| 0:0:01| chol9|1.000|1.000|4.9e-010|3.5e-010|2.9e-005| 2.500143e-0012.499857e-001| 0:0:01| chol10|0.904|0.904|5.7e-011|1.3e-010|4.4e-006| 2.500022e-0012.499978e-001| 0:0:01| chol11|1.000|1.000|5.2e-013|1.1e-011|1.2
26、e-006| 2.500006e-0012.499994e-001| 0:0:01| chol12|1.000|1.000|5.9e-013|1.0e-012|1.8e-007| 2.500001e-0012.499999e-001| 0:0:01| chol13|1.000|1.000|1.7e-012|1.0e-012|4.2e-008| 2.500000e-0012.500000e-001| 0:0:01| chol14|1.000|1.000|2.3e-012|1.0e-012|7.3e-009| 2.500000e-0012.500000e-001| 0:0:01|stop: max
27、(relative gap, infeasibilities) 1.49e-008number of iterations = 14primal objective value = 2.50000004e-001 dual objective value = 2.49999996e-001 gap := trace(XZ) = 7.29e-009relative gap= 4.86e-009actual relative gap = 4.86e-009rel. primal infeas (scaled problem) = 2.33e-012rel. dual = 1.00e-012rel.
28、 primal infeas (unscaled problem) = 0.00e+000rel. dual = 0.00e+000norm(X), norm(y), norm(Z) = 3.2e+000, 1.5e+000, 1.9e+000norm(A), norm(b), norm(C) = 3.9e+000, 4.2e+000, 2.6e+000Total CPU time (secs) = 0.99CPU time per iteration = 0.07termination code= 0DIMACS: 3.3e-012 0.0e+000 1.3e-012 0.0e+000 4.
29、9e-009 4.9e-009Status: SolvedOptimal value (cvx_optval): -32. 程序代码: n=3; a=-3 -1 -3;b=2;5;6;C=2 1 1;1 2 3;2 2 1; cvx_beginvariable x(n) minimize( a*x)subject toC * x =0 cvx_end 运行结果:Calling SDPT3 4.0: 6 variables, 3 equality constraintsnum. of constraints = 3dim. of linear var = 6*SDPT3: Infeasible
30、path-following algorithms*version predcorr gam expon scale_dataNT 1 0.000 1 0it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime 0|0.000|0.000|1.1e+001|5.1e+000|6.0e+002|-7.000000e+001 0.000000e+000| 0:0:00| chol 1 11|0.912|1.000|9.4e-001|4.6e-002|6.5e+001|-5.606627e+000 -2.967567e+001| 0:0:00| chol 1 12|1.000|1.000|1.3e-007|4.6e-003|8.5e+000|-2.723981e+000 -1.113509e+001| 0:0:00| chol 1 13|1.000|0.961|2.3e-008|6.2e-004|1.8e+000|-4.348354e+000 -6.122853e+000| 0:0:00| chol 1 14|0.881|1.000|2.2e-008|4.6e-005|3.7e-001|-5.255152e+000 -5.622
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大白施工合同中的工程材料要求3篇
- 发电机组采购招标工作手册3篇
- 幼儿园年度教育教学工作总结(28篇)
- 健康食堂建议3篇
- 公益活动合作协议书范本3篇
- 工行授权委托书填写3篇
- 新学期高二历史教师工作计划
- 小议合同履行地确定管辖法院
- 交通事故鉴定委托书范本3篇
- 停车规范不乱停乱放宣言3篇
- 《小儿静脉穿刺》课件
- DB11-T 212-2024 园林绿化工程施工及验收规范
- 托盘贸易合作合同范例
- 劳动节安全教育家长会
- 品类运营管理
- 用工单位与劳务派遣公司合同
- 我的家乡浙江衢州
- 国家开放大学国开电大《儿童心理学》形考任务+大作业答案
- 股骨下端骨折的临床特征
- 学前儿童卫生与保健-期末大作业:案例分析-国开-参考资料
- 学校食堂蔬菜配送合同范本
评论
0/150
提交评论