




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、GPS卫星定位基本原理本单元教学重点和难点1、伪距测量的原理及其相应的技术;2、载波相位测量的原理及其相应的技术;3、绝对定位和相对定位的方法。教学目标1、熟悉伪距测量的原理及其相应的技术;2、熟悉载波相位测量的原理及其相应的技术;3、了解GPS绝对定位、相对定位和差分定位的含义;4、了解三种定位的区别和相应的方法。学习指导本章介绍 GPS 测量原理,内容包括: GPS 定位方法分类、 GPS 观测量、动态绝对定位、静态绝对定位、动态相对定位、静态相对定 位以及差分定位。教学目的是使学生掌握 GPS 定位的基本原理,为 学习GPS测量误差、GPS接收机选购与检验、GPS网的设计、GPS 选点、
2、观测和数据处理打下理论基础。本章内容的特点是概念多、理论多、公式多,不涉及技能训练。学习时重点掌握GPS定位的基本原理、GPS定位方法分类、GPS观 测量、绝对定位、精度衰减因子、整周未知数、整周跳等基本概念, 测码伪距动态绝对定位和测相伪距动态绝对定位、 静态绝对定位、 相 对定位、RTK、网络RTK等基本原理。对于教材中的公式推导过程 不要求掌握, 但对公式推导的结论应当理解并熟练掌握。 如观测方程 和定位精度评价公式, 应能结合误差传播定律从中看出影响定位精度 的各种因素,并能通过以后章节学习,掌握相应的测量方法、减弱各种误差影响以提高测量精度的措施本章主要介绍GPS卫星定位的基本原理与
3、定位方法分类;GPS定位所依据的伪距观测量;在测码伪距观测量和测相伪距观测量的基础上,讨论了静态和动态绝对定位原理以及相对定位和差分定位原理。GPS定位原理概述1. GPS定位原理测量学中的交会法测量里有一种测距交会确定点位的方法。与其相似,GPS的定位原理就是利用空间分布的卫星以及卫星与地面点的距离交会得出地面点位置。简言之,GPS定位原理是一种空间的距离交会原理。设想在地面待定位置上安置 GPS接收机,同一时刻接收4颗以上GPS卫星发射的信号。 通过一定的方法测定这 4颗以上卫星在此瞬间的位置以及它们分别至该接收机的距离,据此利用距离交会法解算出测站 P的位置及接收机钟差 S to14图3
4、-1 GPS定位原理91如图3-1,设时刻ti在测站点P用GPS接收机同时测得 P点至四颗GPS卫星Si、S2、S3、S4的距离 -、-2、叮、;?4,通过 GPS电文解译出四颗GPS卫星的三维坐标Xj,Yj,Zj , j =1,2,3,4,用距离交会的方法求解P点的三维坐标 X,Y,Z的观测方程为:P2=(X- X1fY-Y1)2+(Z-Z1)2+c§t=(X-X2)2Y-Y2+(Z-Z2)2+c§tPj=(X-X3)2 +( Y-Y3F+(Z-Z3f+c§tP=(XX4)2YY4f+(ZZ4)2+c§t3-1)式中的c为光速,S t为接收机钟差。由此
5、可见,GPS定位中,要解决的问题就是两个:一是观测瞬间 GPS卫星的位置。上一章中,我们知道GPS卫星发射的导航电文中含有GPS 卫星星历,可以实时的确定卫星的位置信息。二是观测瞬间测站点至 GPS卫星之间的距离。站星之间的距离是通过测定 GPS卫星信 号在卫星和测站点之间的传播时间来确定的。 本章在讲述定位原理的同时, 将解决距离测定 的问题。2 GPS 定位方法分类利用 GPS 进行定位的方法有很多种。若按照参考点的位置不同,则定位方法可分为(1)绝对定位。即在协议地球坐标系中,利用一台接收机来测定该点相对于协议地球质心的位置,也叫单点定位。这里可认为参考点与协议地球质心相重合。GPS 定
6、位所采用的协议地球坐标系为 WGS-84 坐标系。因此绝对定位的坐标最初成果为 WGS-84 坐标。(2)相对定位。即在协议地球坐标系中,利用两台以上的接收机测定观测点至某一地 面参考点(已知点) 之间的相对位置。也就是测定地面参考点到未知点的坐标增量。由于星 历误差和大气折射误差有相关性, 所以通过观测量求差可消除这些误差, 因此相对定位的精 度远高于绝对定位的精度。按用户接收机在作业中的运动状态不同,则定位方法可分为 (1)静态定位。即在定位过程中,将接收机安置在测站点上并固定不动。严格说来, 这种静止状态只是相对的,通常指接收机相对与其周围点位没有发生变化。( 2)动态定位。即在定位过程
7、中,接收机处于运动状态。GPS 绝对定位和相对定位中,又都包含静态和动态两种方式。即动态绝对定位、静态绝 对定位、动态相对定位和静态相对定位。若依照测距的原理不同,又可分为测码伪距法定位、测相伪距法定位、差分定位等。 本章将论述测码伪距和测相伪距进行绝对定位和相对定位的原理和方法。最后将讲述当前比较流行的差分 GPS定位技术。伪距测量原理1 GPS 测量的基本观测量利用 GPS 定位,不管采用何种方法,都必须通过用户接收机来接收卫星发射的信号并 加以处理,获得卫星至用户接收机的距离,从而确定用户接收机的位置。GPS 卫星到用户接收机的观测距离, 由于各种误差源的影响, 并非真实地反映卫星到用户
8、接收机的几何距离, 而是含有误差, 这种带有误差的 GPS 观测距离称为伪距。 由于卫星信号含有多种定位信息, 根据不同的要求和方法,可获得不同的观测量:( 1) 测码伪距观测量(码相位观测量) ;( 2) 测相伪距观测量(载波相位观测量) ;( 3) 多普勒积分计数伪距差;(4) 干涉法测量时间延迟;目前,在 GPS 定位测量中,广泛采用的观测量为前两种,即码相位观测量和载波相位观测量。 多普勒积分计数法进行静态定位时, 所需要的观测时间一般要数小时, 它一般应用 于大地测量中。 干涉法测量所需的设备相当昂贵, 数据处理也比较复杂, 目前只用于高精度 大地点测量。其广泛应用尚待进一步研究开发
9、。2 测码伪距测量2 1 码相位测量测码伪距测量是通过测量 GPS 卫星发射的测距码信号到达用户接收机的传播时间, 从而计算出接收机至卫星的距离,即(3-2)式中:二t 传播时间;c 光速为了测量上述测距码信号的传播时间,GPS卫星在卫星钟的某一时刻 tj发射出某一测距码信号,用户接收机依照接收机时钟在同一时刻也产生一个与发射码完全相同的码(称为复制码)。卫星发射的测距码信号经过 .讥时间在接收机时钟的ti时刻被接收机收到 (称为接收 码),接收机通过时间延迟器将复制码向后平移若干码元,使复制码信号与接收码信号达到 最大相关(即复制码与接收码完全对齐),并记录平移的码元数。平移的码元数与码元宽
10、度的乘积,就是卫星发射的码信号到达接收机天线的传播时间At,又称时间延迟。测量过程参见图3-2。0111011000111100011100II 发)0111011000111100011100HIF 1til 1CuDo 接收码©(t )1DI 1nuh0-J0111011000111100011100复制码© (t )图3-2码相位测量示意图2. 2测码伪距观测方程及其线性化GPS采用单程测距原理,要准确地测定站星之间的距离,必须使卫星钟与用户接收机钟保持严格同步,同时考虑大气层对卫星信号的影响。但是,实践中由于卫星钟、 接收机钟的误差以及无线电信号经过电离层和对流层中
11、的延迟误差,导致实际测出的伪距L与卫星 到接收机的几何距离 匸有一定差值。二者之间存在的关系可用下式表示:Pj(t )= P/(t )+c6tj(t )c6tj(t )+£g(t)+织,T(t )( 3-3)式中:Pj (t )观测历元t的测码伪距;Pij (t )观测历元t的站星几何距离,P = 3 c = c£ (GPS ) tj (GPS );ti t观测历兀t的接收机(Ti )钟时间相对于GPS标准时的钟差,ti 二 1 GPS ti ;t观测历兀t的卫星(S )钟时间相对于GPS标准时的钟差,tj =tj GPS 、tj;也i i (t)观测历元t的电离层延迟;1
12、 , 1 g& ,T (t )观测历元t的对流层延迟。式(3-3)即为测码伪距观测方程。GPS卫星上设有高精度的原子钟,与理想的GPS时之间的钟差,通常可从卫星播发的导航电文中获得,经钟差改正后各卫星钟的同步差可保持在20ns以内,由此所导致的测距误差可忽略,则由(3-3)式可得测码伪距方程的常用形式:甲(t )=时(t )+C% (t Zjg (t )+出,T (t )( 3-4)利用测距码进行伪距测量是全球定位系统的基本测距方法。GPS信号中测距码的码元宽度较大,根据经验,码相位相关精度约为码元宽度的1%。则对于P码来讲,其码元宽度约为29.3m,所以量测精度为 0.29m。而对C
13、/A码来讲,其码元宽度约为293m,所以量测精度为2.9m。因此,有时也将 C/A码称为粗码,P码称为精码。可见,采用测距码进行站 星距离测量的测距精度不高。在式(3-4)中,GPS观测站丁的位置坐标值隐含在站星几何距离彳t中:Pij(t)=F(t)“(q1( 3-5)邛xj t -Xi t 2 yj t - y U2 zj t -z t 2 3式中it二X i, y , z T为测站T,在协议地球坐标系中的坐标向量;?j t = Xj,yj,zj【为卫星Sj在协议地球坐标系中的坐标向量。计t、 Q t、 一 t的几何关系如图3-3所示。显然,观测方程(3-5)是非线性的,计算起来麻烦而费时。
14、因此必须将其化为便于计算机解算的形式,即对其进行线性化。取测站T的坐标初始向量为Jot二IXio,yio,Zio T其改正数向量为- Lxi, :yi, ;.zi T(3-6)则测站T到卫星Sj的向量的方向余弦为:Tj t1、j一jX:io t1计t1 1V -o t1计t1:zj:iJo tXj t -Xio 1=1/ t【yj(t)%0】=m/(t 卜式中?i01 a'Xo t Xi。t f yo t -ye t f Zo t -Ze t f'为站星距离的近似 值。于是,将(3-5 )式的站星几何距离进行线性化,取至一次微小项,有:I X j - §XiPij(t
15、 )= Pijo(t )+(i (O mij(t) nij(t )】6y j M|_6z j - 6zi(3-7)一般在GPS定位数据处理中,将卫星星历中所获得的卫星坐标视为固定值,因此卫星坐标 的改正数Lxjyj,:zj T视为零。由此,测码伪距方程的线性化形式为:ilPi(t)=Pi0(t)+Liij(t)mj(t)n j(t)】®i +ti(t)+&,ig(t)+&,T(t)( 3-8)3乙一3. 测相伪距测量3. 1载波相位测量由上节可知,测码伪距的量测精度过低,无法满足测量定位的需要。如果把GPS信号中的载波作为量测信号, 由于载波的波长短, l = 19c
16、m , _2 = 24cm,所以对于载波L1 而言,相应的测距误差约为 1.9m m,而对于载波|_2而言,相应的测距误差约为 2.4mm。可 见测距精度很高。但是,载波信号是一种周期性的正弦信号,而相位测量又只能测定其不足一个波长的部分,因而存在着整周数不确定性的问题,使解算过程变得比较复杂。在GPS信号中由于已用相位调整的方法在载波上调制了测距码和导航电文,因而接收到的载波的相位已不再连续,所以在进行载波相位测量之前,首先要进行解调工作, 设法将调制在载波上的测距码和导航电文解调,重新获取载波,这一工作称为重建载波。重建载波一般可采用两种方法,一种是码相关法,另一种是平方法。采用前者,用户
17、可同时提取测距信号和卫星电文,但是用户必须知道测距码的结构;采用后者,用户无须掌握测距码的结构,但只能获得载波信号而无法获得测距码和导航电文。载波相位测量是通过测量 GPS卫星发射的载波信号从 GPS卫星发射到GPS接收机的传 播路程上的相位变化,从而确定传播距离。因而又称为测相伪距测量。载波信号的相位变化可以通过如下方法测得:某一卫星钟时刻tj卫星发射载波信号j(tj),与此同时接收机内振荡器复制一个与发射载波的初相和频率完全相同的参考载波(tj),在接收机钟时刻ti被接收机收到的卫星载波信号-(ti )与此时的接收机参考载波信号的相位差,就是载波信号从卫星传播到接收 机的相位延迟(载波相位
18、观测量)。测量过程参见图3-4。hj相位延迟 h图3-4载波相位测量因此,接收机Ti在接收机钟时刻ti观测卫星Sj的相位观测量可写为:叭 ti - ti - " tj - - titj( 3-9)相位与频率的关系是、=2二ft,在式(3-9)中,可将等式的左右同除以2n ,则有二ft。根据简谐波的物理特性,上述的载波相位观测量: ti可以看成整周部分 NJ ti和不足一周的小数部分:.ti之和,即有:忙 ti 二 N/ti气(3-10)实际上,在进行载波相位测量时,接收机只能测定不足一周的小数部分:.:; ti 。因为载波信号是一单纯的正弦波,不带有任何标志,所以我们无法确定正在量测
19、的是第几个整周的小数部分,于是便出现了一个整周未知数N/ tj,或称整周模糊度。如何快速而正确的求解整周模糊度是 GPS测相伪距观测中要研究的一个关键问题。当锁定(跟踪)到卫星信号后,在初始观测历元t0,有:忙 to 二 Nijt° ijt°( 3-11)卫星信号在历元to被跟踪后,载波相位变化的整周数便被接收机自动计数。所以对其后的任一历元的总相位变化,可用下式表达:叭 ti = Nij toNij ti -t ij ti( 3-12)式中:n/ t0 初始历元的整周未知数,在卫星信号被锁定后就确定不变,是一个未知常数,是通常意义上所说的整周待定值(整周未知数);Nij
20、ti -to 从初始历元to到后续观测历元ti之间载波相位变化的整周数,可由 接收机自动连续计数来确定,是一个已知量,又叫整周计数;-ti 后续观测历元ti时刻不足一周的小数部分相位,可测定,是观测量。上述载波相位观测量的几何意义,可参见图3-5。若取ij ti 七 ti -t。"j ti(3-13)则丫 ti是载波相位的实际观测量,即用户GPS接收机相位观测输出值。因此,(3-12 )式可写为W ti 二 N/ t。 , ti( 3-14)设载波信号的波长为,则卫星到测站点的几何距离为: ti 八:叮 ti( 3-15)3. 2载波信号的传播时间假设,载波相位观测量是依据 GPS标
21、准时获得的,即卫星Sj在历元tj GPS发射载波 信号;:j tj GPS 1,在历元ti GPS被接收机Ti收到,此时的接收机参考载波信号为 ti GPS 1,则相位差按(3-9)式可写为:-<j ti GPS 丄 N GPSl,j tj GPS 1(3-16)一般说来,若一个振荡器的振荡频率非常稳定,则相位与频率之间存在如下关系:t 氏八 t f t(3-17)由于GPS接收机采用高质量的晶体振荡器,所以其频率的稳定度很高,由频率误差所引起的相位误差是极微小的,可以忽略。若设卫星的载波信号频率f j和接收机振荡器的固有频率花相等,均为f,则有I GPS I- j tj GPS 1 f
22、 I GPS -tj GPS 1将(3-18)式带入(3-16 )式,可得:I GPS I - f £ GPS -tj GPS L f.j(3-18)(3-19)式中:二tj GPS -tj GPS(3-20)由上式可知,.ij是在卫星钟与接收机钟同步的情况下,卫星信号由卫星Sj到用户接收机Ti的传播时间。由于卫星和用户接收机的空间距离在不断变化,故传播时间也是变化的。它与卫星信号的发射历元以及该信号的接收历元有关,因发射历元是未知的,为了实际应用,需要根据已知的观测历元 tj来讨论一下载波信号的传播时间。将站星之间的几何距离 彳tj GPS ,tj GPS 1除以光速c,在忽略大气
23、折光影响的情况下,可得到传播时间:ij =讦 tj GPS ,tj GPS 1 c(3-21)几何距离tj GPS,tj GPS 1是发射历元tj GPS和接收历元tj GPS的函数,且tj GPS =tj GPS,将(3-21)式在tj GPS处按泰勒级数展开,可得:A# =1 Pij L(GPS 91 Rj L(GPS 血可j + 丄引 tj(GPS 卩心讦 2 (3-22)cc2c对于GPS卫星来说,上式中的二次项系数丹tj(GPS )1不会超过8.7"0°0(乂),也就是说上式中的二次项及其后的高次项影响极微小,可以略去。进一步考虑接收机钟差。实际上接收机钟相对于G
24、PS时存在误差:tj,且有(3-23)tj GPS 二 tj - t tj将(3-23)式带入(3-22)式,并且再次在tj处按泰勒级数展开,并且略去其中影响微弱的 高次项,整理后可得:1 1 . 1 - -jj吟 t - tj 卩 tj - ' tj -j(3-24)ccc1对于.-: 7采用迭代法,由于系数项 昇ti很小,故收敛很快,取一次迭代即可。这里取c1一次迭代,并略去 -和ti的平方项,可得:c1 j 1 . j 1 . j iJ ti 1 一一几ti 一一 r ti :.ti ti( 3-25)c C _ c最后考虑到观测历元ti大气电离层和对流层对卫星信号的延迟影响也i
25、 | *和也j,T(ti),最i,1 p终将卫星信号的实际传播时间表示为:=! PjJ(tj b1 Jti 丄丄化 选(ti )显 & I (ti )+&T(ti "(3-26)c c _Ccl 3 pJ 3. 3测相伪距观测方程及其线性化对于载波信号传播路径上的相位变化:-:<J ti ,若考虑到卫星钟差:.tJ ti和接收机钟差6ti(ti ),同时考虑到相位与频率之间的关系式(3-17),可将(3-9)式化为:->j t = >:! h GPS f l4i tj 一 屮 ti 1将(3-19)式带入(3-27 )式,则有:叭 ti 1= f.i
26、J f L-ti ti -屮 ti 1(3-27)(3-28)将(3-22)式带入(3-24)式,并略去观测历元的下标i,则得到以任意观测历元t为自变量的载波相位差的表达式:啪卜牛岬却呵+f卜沖咖心ftJ(t)+f 帆)+%训考虑到(3-14),可以将上式表示为载波相位实际观测量/(t )的形式:? t f ? t 1-丄计 t f 1t、tj tc 1 C 1 c ftJt -NiJt° f *,ipt +,Tt式(3-30)即为载波相位的观测方程。考虑到关系式二cf,则可由上式得到测相伪距观测方程:C弟(tiNjJ(t0)+l(t)+*,T(t)(3-29)(3-30)(3-31
27、)p1式中含有 片t的项对伪距的影响为米级。在相对定位中,如果基线较短(20km以内),c则有关的项可以忽略,则(3-30)和(3-31)式可简化为:叩(t) = f 时(t片 fBti(t)6tj(tNjj(t。)+丄居 ip(t)+&t (tP ( 3-32)曲jj (t )= Pjj (t)+cbtj(t)6tj(tp小/ (to)+*(t)+*,T(t)( 3-33) p在不影响理解GPS定位原理的情况下,我们常采用上述(3-32 )和(3-33)式的测相伪距方程的简化形式。而当测量基线较长时,可在(3-30 )和(3-31 )的基础上扩展出更为严密的形式。若将(3-7)式代入
28、(3-33 )式,则可得测相伪距方程的线性化形式:“ t = *0tL|jj t -mjj(t) 一 nJ (t和比一丸nJ (t° )(3-34)+ 山沖)dtj(t 升珅,i p(t)+,T(t)上述模型,在 GPS精密定位中有着广泛的应用,既可用于单点定位,也可进行相对定 位。上节和本节对测码伪距观测量和瞬时载波相位观测量及其计算进行了较为深入地讨论, 这是因为在实际应用中需要采用的观测量正是上述观测量的各种线性组合所构成,是研究 GPS定位的基本理论。4. 整周未知数的确定由上节中讲述的测相伪距测量原理可知,在以载波相位观测量为根据的GPS精密定位中,初始整周未知数 N/ t
29、0的确定是定位的一个关键问题,准确而快速的解算整周未知数对保障定位精度、缩短定位时间、提高GPS定位效率都具有极其重要的意义。GPS定位时,只要确定了整周未知数,则测相伪距方程就和测码伪距方程一样了。若都不考虑卫星钟差的影响,则只需要解算四个未知数(X、丫、Z、孔(t ),这时至少同 步观测4颗以上卫星,利用一个历元就可以进行定位。目前,解算整周未知数的方法很多。下面将介绍几种解算整周未知数的常用方法。4.1平差待定参数法在经典静态定位中,常把整周未知数当作平差计算中的待定参数,与其他参数一并求解。(1)整数解(固定解)根据整周未知数的物理意义,它理论上应该为整数。但是,由于各种误差的影响,整
30、周未知数的解算结果一般为非整数。对于短基线,当进行I小时以上的静态相对定位时,由于测站间星历误差、大气折射误差等具有较强的相关性,相对定位可以使这些误差大大消弱; 同时也由于在较长的观测期间,观测卫星的几何分布会产生较大的变化,因此,能以较高的精度来求定整周未知数。此时,平差求出的整周未知数一般为较接近于相邻近整数的实数, 且如果整周未知数估值的中误差甚小,可以将其取为相接近的整数(四舍五入),则可直接取相邻近的整数为整周未知数;或者从统计检验的角度出发, 取整周未知数估值加上 3倍的中误差为整周未知数的整数取值范围,该范围内包含的所有整数均作为整周未知的候选值。 此时, 作为已知参数再次带入
31、观测方程, 重新平差解算其它的参数。 在基线较短的相对定位 中,若观测误差和外界误差对观测量的影响较小时,这种整周未知数的确定方法比较有效。 由这种整周未知数的整数解获得的待定点坐标估值也称为固定解。(2)非整数解(实数解或浮动解)在基线较长的静态相对定位中, 误差的相关性降低, 卫星星历、 大气折射等误差的影响 难以有效消除,外界误差对观测量的影响比较大,采用上述方法求解整周未知数精度较低, 事实上,整周未知数的实数解中往往包含了一些系统误差,此时, 再将其取为某一整数,实 际上对于相对定位精度只会有损而无益。 所以通常对于 20km 以上的长基线一般不再考虑整 周未知数的整数性质, 直接将
32、实数作为整周未知数的解, 此时, 通过平差计算得到的整周未 知数不是整数,不必凑整,直接以实数形式代入观测方程,重新解算其它参数。由实数整周未知数获得的待定点坐标估值称为浮动解。 在静态相对定位中求解整周未知 数时常采用此种方法。平差待定参数法解算整周未知数, 往往需要观测一个小时甚至更长的时间, 从而影响了 作业效率。因此,此法一般用于经典静态相对定位模式进行高精度的GPS 定位中。4.2 快速解算法( FARA )1990年E.Frei和GBeutler提出了快速解算整周模糊度算法( FARA )。基于此方法的静 态相对定位, 所需要的观测时间可缩短到几分钟。 目前很多接收机的基线解算软件
33、都采用了 此算法。FARA 法的基本思想是, 以数理统计理论的参数估计和假设检验为基础, 充分利用初始 平差的解向量(站点坐标及整周模糊度的实数解) ,及其精度信息(方差与协方差阵和单位 权中误差),确定在某一个置信区间,整周模糊度可能的整数解的组合,然后依次将整周模 糊度的每一个组合作为已知值, 重复地进行平差计算, 其中能使估值的验后方差 (或方差和) 为最小的一组整周模糊度,即为所搜索的整周模糊度的最佳估值。实践证明, 在短基线情况下, 根据数分钟的双频观测成果, 便可精确的确定整周模糊度 的最佳估值,使相对定位的精度达到厘米级。4.3 动态法前面所述的方法主要用于静态 GPS定位模式,
34、尽管GPS接收机观测卫星的时间有长有 短,但是接收机均处于静止状态,故称为静态法。当前, GPS 动态定位的应用也越来越广。在高精度的动态相对定位中,若采用测量伪 距观测量来实现, 同样也涉及整周未知数的确定问题。 一般说来, 为了确定运动载体的实时 位置,要求将装载于载体之上的 GPS 接收机在运动之前预先确定初始整周未知数,这个过 程称为GPS的初始化。并且在载体运动之后至少要保持对4颗以上卫星的连续跟踪,才能实现实时动态相对定位, 一旦卫星失锁, 则必须停下来, 采用静态法重新确定整周未知数 (或 重新初始化) 。这样严重影响了测相伪距法在高精度动态定位中的应用。1993年,莱卡公司成功
35、地开发了一种动态确定整周未知数的方法(AROF),并研制出了相应软件, 能够在接收机运动过程中确定整周未知数, 或实现动态初始化, 为实现精密实 时动态相对定位(RTK或RTD )开辟了一条重要途径。AROF的基本思想:在载体运动过程中,载体上的GPS接收机与参考站上的 GPS接收机,对共视卫星进行同步观测,利用快速解算法(如 FARA 法),对卫星的载波相位观测值 进行平差处理, 确定初始整周未知数。 而在上述为初始化所进行的短时间观测过程中, 载体 已经有了位移, 载体的瞬时位置则是根据随后确定的整周未知数, 利用逆向求解的方法来确 定。这一方法的特点是在载体运动过程中所观测的卫星一旦失锁
36、,为重新确定整周未知数, 运动载体不需要停下来重新进行初始化工作,它可在载体运动过程中实现。在动态确定整周未知数时,为了增加解的可靠性和精确性,除了尽可能多的跟踪卫星之外,观测的历元数应该尽可能多。莱卡公司1994年推出的软件中,要求初始化观测时段的长度约为200s。目前这一方法已在短基线(10km以内)实时动态相对定位中得到了成功的 应用,其定位精度可以达到厘米级。5. 周跳的探测分析与修复周跳就是由于 GPS接收机对于卫星信号的失锁,而导致GPS接收机中载波相位观测值中的整周计数所发生的突变。由测相伪距测量原理可知,GPS接收机Ti在某历元ti观测卫星Sj的理论相位差包含两部分:整周部分N
37、/ ti和可测的不满一周的小数部分彳ti ,而整周部分又可分为初始历元的整周数 N/ t0和初始历元到任一观测历元的的整周数N/ ti -t0 o GPS接收机计数器能记录下:;:ij ti和N/ ti -t°。因此,要获得高精度定位,必须准确的解算整周未知数 Nij t0之外,还必须保证计数器准确记录整周计数N/ tj -t0和小数部分相位 -T ti ,特别是整周计数应该是连续的。如果由于各种原因, 导致计数器累计发生中断, 那么恢复计数器后,其所计的整周计数与正确数之间就会存在一个偏差,这个偏差就是因周跳而丢失掉的周数。其后观测的每个相位观测值中都含有这个偏差。产生周跳的主要原
38、因是卫星信号失锁, 例如卫星信号被障碍物遮挡而暂时中断, 或受到 无线电信号干扰而造成失锁等。这些原因都会使计数器的整周数发生错误, 由于载波相位观 测量为瞬时观测值,因此不足一周的小数部分总能保持正确。周跳有两种类型。第一种是当卫星信号的接收被中断数分钟或者更长的时间时,GPS在数个观测历元中不再有载波相位观测值,这类周跳容易识别。另一种是卫星信号的中断时间很短,可能发生在两相邻历元之间,在每个历元都包括整周计数小数部分相位值,然而整周数已有突变,不再衔接,所出现的周跳可能小至一周,也可大致数百周。这类周跳难以识别,因为即使没有发生周跳,相邻两历元之间的相位观测值中的整周数也是在不停变化的,
39、 其中是否有周跳发生,则需要用专门的方法加以探测。如何判断周跳并恢复正确的计数是 GPS数据处理中的一项很重要工作。许多软件中都已经有这一功能,称为周跳探测与修复, 一般在平差之前的数据预处理阶段进行。容易理解,在不发生周跳的情况下,随着用户接收机与卫星间距离的变化,载波相位观测值也随之不断变化,其变化应该是平缓而有规律的。一般说来,在相位观测的历元序列中,对相邻历元的相位观测值取差,相邻相位观测值之差值称为一次差;相邻一次差的差值称为二次差;以此类推,当取至45次差之后,距离变化时整周数的影响已可忽略,这时的差值主要是由于振荡器的随机误差引起的,因而应具有随机性的特点。但是,如果在观测过程中
40、发生了周跳现象,那么便破坏了上述相位观测量的正常变化规律,从而使其高次差的随机特性也受到破坏。利用这一性质,便可以在相位观测时发现周跳现象。表3-1载波相位观测量及其差值历兀j(t)1次差2次差3次差4次差tl475 833.225111608.7533t2487 441.978 4399.813812 008.567 12.5074t3499 450.545 5402.321 2-0.579312 410.888 31.927 7t4511 861.433 8404.248 90.963 92.891 612 815.137 2t5524 676.571 0407.140 5-0.272 1
41、13 222.277 72.619 5t6537 898.848 7409.760 0-0.421 913 632.037 72.197 6t7551 530.886 4411.957 614 043.995 3t8565 574.881 7表3-2含有周跳影响的载波相位观测量及其差值历兀 j(t)1次差2次差3次差4次差t1475 833.225 111 608.7533t2487 441.978 4399.813812 008.567 12.5074t3499 450.545 5402.321 2100.5797*12 410.888 3-98.0723*t4511 861.433 830
42、4.248 9*300.963 9*202.891 6*12 715.137 2*t5524 576.571 0*507.140 5*300.272 1*13 222.277 7-97.380 5*t6537 798.848 7*409.760 099.578 1*13 632.037 72.197 6t7551 430.886 4*411.957 614 043.995 3t8565 474.881 7*表3-1中就列出了不同历元由测站T观测卫星Sj的相位观测值。因为没有周跳,对于不同历元观测值取至 4至5次差之后的差值具有随机特性。而在表3-2中,由于观测过程中 出现了周跳现象,高次差的随
43、机特性受到破坏,且求差的次数越高差异越大。以上方法不适用于计算机处理,为此可采用多项式拟合的方法进行。多项式拟合法是利用前面几个正确的相位观测值拟合一个m级多项式,用该多项式外推出下一个观测值,并与实测值进行比较, 从而发现并修正周跳,由以上分析可知,经4至5次差后,就已经出现了随机特性,因此多项式阶数取到4至5次即可。周跳的探测与修复的方法有多种,除了上述高次差或多项式拟合法外,还有星际差分探测与修复法、数据处理后的残差探测与修复法等,在此不一一列举。目前生产的很多种接收机在卫星信号失锁时都能自动报警,不仅在原始观测数据中会有提示,而且可以显示在屏幕上,为数据预处理中的周跳探测提供了有利条件
44、。在各种含周跳自检的GPS接收机中采用的检测周跳的软件尽管方法各不相同,但自动化程度较高,一般 都不需要人工干预了。绝对定位原理GPS绝对定位又叫单点定位,即以GPS卫星和用户接收机之间的距离观测值为基础,并根据卫星星历确定的卫星瞬时坐标,直接确定用户接收机天线在WGS-84坐标系中相对于坐标原点(地球质心)的绝对位置。根据用户接收机天线所处的状态不同,绝对定位又可分为静态绝对定位和动态绝对定 位。因为受到卫星轨道误差、 钟差以及信号传播误差等因素的影响,静态绝对定位的精度约为米级,而动态绝对定位的精度约为1040m。因此静态绝对定位主要用于大地测量,而动态绝对定位只能用于一般性的导航定位中。
45、1. 静态绝对定位原理接收机天线处于静止状态下,确定观测站坐标的方法,称为静态绝对定位。这时,接收机可以连续地在不同历元同步观测不同的卫星,测定卫星至观测站的伪距,获得充分的观测量,通过测后数据处理求得测站的绝对坐标。根据测定的伪距观测量的性质不同,静态绝对定位又可分为测码伪距静态绝对定位和测相伪距静态绝对定位。1. 1测码伪距静态绝对定位依据(3-3 )式,为了推导方便,取:Rij t丁 t -Mig tj,T t(3-35)代入(3-8)式,则测码伪距观测方程可写为X(t 戶 Pj0(t)+L|/(t ) - m/(t) -n/(冷切 +c5ti(t)(3-36)式中的大气层延迟参数可从导
46、航电文中获得,而卫星Sj在地球协议坐标系中的坐标也可通过卫星星历得到。显然,式中在某个历元t只有测站Ti在协议地球坐标系中的坐标向量(xi, yi ,Zi T和接收机钟的钟差 員i (t )这4个未知参数,正是我们需要求解的。 为此,至少需 要建立4个类似的方程。所以,用户至少需要同步观测 4颗卫星以便获得 4个以上测码伪距 观测方程。根据以上分析,在一段时间内,若GPS接收机在测站Ti在某个历元t同步观测4颗以上卫星(j =1,2,3,4,nj),则有(3-36)式可得:IP;0(t )1一1掩)m;(t) n ;(t)仁讹W2(t)Pio(t)li2(t) mf(t) ni2(t) -1a
47、s*maa6乙nj .R (t)一1PiO (t )1nj1njli (t) mi(t) ni (t) -1Jgi 一(3-37)为了采用最小二乘法平差求解,将上式写成误差方程的形式:H(t)11l;(t) m:(t) n ;(t)-11血i 1_R"t)P:o(t)1vi2 (t)22 j2li(t) mi (t ) m (t)-1创+R (t)PE)»aaaa以tL1J(t) m;(t) n(t) -1_M 一1Rijt)-Pi;j (t)一(3-38)或者写为(3-39)Vi (t )= ai (t 0T + li (t)上述误差方程仅考虑了 GPS接收机在某历元t同
48、时观测nj颗卫星的情况。由于我们讨论的是静态绝对定位,测站 Ti上的接收机处于静止状态,故可以于不同历元,多次同步观 测一组卫星,由此可以获得更多的测码伪距观测量,一般通过平差提高定位精度。于是,以(表示观测卫星的个数,nt表示观测的历元次数,则在忽略测站接收机钟钟差随时间变化的情况下,由(3-39)式进一步考虑nt个历元数而写成相应的误差方程组:Vi (tnJ.ai(tnt)1GiI(t1 )1|li(t2)9Ji(tnt )(3-40)或者写为Vi 二 A Ti Li按照最小二乘法求解可得:、T = -1At Ai ' AT Li解的精度:t * o qii(3-41)(3-42)
49、(3-43)式中:mT为解的中误差;二0为伪距测量中误差; qH为权系数阵Qz主对角线的相应元素,应当说明的是,如果观测时间较长, 在不同历元,观测的卫星数一般可能不同,在组成 上列系数阵时应予注意。同时,GPS接收机钟差的变化,往往是不可忽略的。此时,可根据具体情况,或者将钟差表示为多项式的形式,并将系数作为未知数,在平差中一并求解; 或者针对不同观测历元, 简单的引入不同的独立的钟差参数。关于待求未知数,在前一种情况下应为3 nc,后一种情况下应为3 nt。其中nc为钟差模型的系数个数;nt为观测的历元数。测相伪距观测量应该多于待定未知数的个数。这种多卫星多历元的定位方法,在静态单点定位中
50、应用较广,它可以比较精确的测定静止观测站在 WGS-84坐标中的绝对坐标。1. 2测相伪距静态绝对定位与研究测码伪距静态绝对定位原理一样,为了推导方便,取:Rfj(t)"£j(t)-* ,ip(t)_& ,T(t)( 3-44)代入(3-34)式,并且修正后的卫星钟差屮t忽略不计,则测相伪距观测方程可写为斷1(t )=P/o(t)+匚|/(t)m¥(t)nij(t 卩勿i Njj(to)+c6tj(t)(3-45)与测码伪距观测方程(3-36)式相比,这里除了增加一个未知数Njj(t0 )整周未知数,以及电离层折射改正不同之外,其余的待定参数与系数均完全相
51、同。前已述及,如果在起始历元 t0卫星Sj被锁定后,在观测期间没有发生失锁现象,那么在测站Ti对所观测的卫星Sj来说,整周未知数 N/ t0是一个只与该起始历元 to有关的常数。般说来,若在历元t,在测站Ti同步观测了 nj颗卫星,则按照(3-45)式可写出误差方程组: i 片 FVi2 (t)a=Vinj (t )It11njiI; tli2 tm1 tm2 tni1 (t n2 (t )-111-1hi如i i+1:' |2乙ninj t)1需心心)m1 t0lXN1(tAN%。)+ R2(t)-Pj20(t)(3-46)Rnj(t)Pjt)或者表示为(3-47)Vi t pt X
52、ibi t、" tei t Ni li t上面描述的是,在测站 Ti于同一历元t观测nj颗卫星所得到的误差方程。由于测站是静止的,于一段时间内对一组卫星观测了nt个历元,则按照上式,可写出相应于多个历元多颗卫星的误差方程组:ai t26Xi"bi (ti )0ajtnt )g (ti ”+ e(t2)0bj tntNi_li (tl )1i(t2)(3-48)ntliftnt )或者(3-49)式可写为Vj = A 'Xj Bj、0 EjNj L(3-49)Vj = lAi BiE J 甲屮一Li(3-50)取符号则按最小二乘法求解,可得:Gj = Aj Bi Ei
53、 1(3-51)汎二-GiTGi GT Li 1解的精度可按下式估算:(3-52)Nij t0与所观测的卫星有关,故这里必须说明,如果静态观测时间段较长, 在这段时间里,在不同历元观测的卫星数可 能不同,在组成平差模型时应予注意。另外,整周未知数 在不同的历元观测的卫星不同时,将增加新的未知参数,这会导致数据处理变得更加复杂,而且有可能会降低解的精度。因此,在一个观测站的观测过程中,于不同的历元尽可能的观测同一组卫星。静态观测站Ti在定位观测时,观测nj颗卫星,观测nt个历元,可得到nj nt个测相伪距观测量。待解的未知数包括:测站的三个坐标分量,nt个接收机钟差,与所测卫星数相等的nj个整周
54、未知数。因此,为了能解求出所有未知数,则观测方程的总数必须满足:nj nt - 3 nt nj3 n即ntj(3-53)nj 一1由上式可见,应用测相伪距法进行静态绝对定位时,由于存在整周不确定性的问题,在同样观测4颗卫星的情况下,至少必须同步观测3个历元,这样才能解求出测站的坐标值。在定位精度不高,观测时间较短的情况下,可以把GPS接收机的钟差视为常数。这时(3-53)式可表示为:4 njntj( 3-54)n可见,在同时观测 4颗卫星的情况下,至少必须同步观测2个历元。由于载波相位观测量的精度很高,所以有可能获得较高的定位精度。但是影响定位精度的因素还有卫星轨道误差和大气折射误差等,只有当卫星轨道的精度相当高,同时又能对观测量中所含的电离层和对流层误差影响加以必要的修正,才能更好的发挥测相伪距静态绝对定位的潜力。测相伪距静态绝对定位, 主要用于大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 探讨科技教育背景下如何开展多元化初中物理实验教学模式
- 企业预算管理对内部控制体系的应用研究
- 商业权益保护协议书范本
- 教育家精神引领双师型教师发展的路径与实践
- 公司新年包饺子活动方案
- 救护车买卖协议书范本
- 小组分红协议书范本
- 影视特效技术及其在电影中的应用案例分析
- 探索鸟类的听觉和视觉世界
- 提升个人效率工作与生活的平衡艺术
- 2025-2030中国疏浚工程行业发展态势与前景规划分析报告
- 科室vte管理制度
- 2025年山西万家寨水务控股集团所属企业招聘笔试参考题库含答案解析
- 中小学美术教学评价构建及实施策略
- 2025-2030玉石行业风险投资发展分析及运作模式与投融资研究报告
- 公共组织绩效评估-形考任务二(占10%)-国开(ZJ)-参考资料
- 西门子SAMA图DEH逻辑讲解
- 施工现场安全、文明施工检查评分表
- 管道支架重量计算表常用图文精
- 国家开放大学《数据结构(本)》单元测试参考答案
- 中药化学成分的预试验大全
评论
0/150
提交评论