高考各科理(全国通用)二轮复习专题训练:五年高考专题17第6节离散型随机变量的分布列、均值与方差word版含答案合集17套(有详细解析)_第1页
高考各科理(全国通用)二轮复习专题训练:五年高考专题17第6节离散型随机变量的分布列、均值与方差word版含答案合集17套(有详细解析)_第2页
高考各科理(全国通用)二轮复习专题训练:五年高考专题17第6节离散型随机变量的分布列、均值与方差word版含答案合集17套(有详细解析)_第3页
高考各科理(全国通用)二轮复习专题训练:五年高考专题17第6节离散型随机变量的分布列、均值与方差word版含答案合集17套(有详细解析)_第4页
高考各科理(全国通用)二轮复习专题训练:五年高考专题17第6节离散型随机变量的分布列、均值与方差word版含答案合集17套(有详细解析)_第5页
已阅读5页,还剩84页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、考点一离散型随机变量的分布列1(2013·广东,4)已知离散型随机变量X的分布列为X123P则X的数学期望E(X)()A. B2 C. D3解析由已知条件可知E(X)1×2×3×,故选A.答案A2(2015·安徽,17)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和

2、均值(数学期望)解(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A.P(A).(2)X的可能取值为200,300,400.P(X200),P(X300),P(X400)1P(X200)P(X300)1.故X的分布列为X200300400PE(X)200×300×400×350.3(2015·福建,16)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试若密码正确,则结束尝试;否则继续

3、尝试,直至该银行卡被锁定(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望解(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)××.(2)依题意得,X所有可能的取值是1,2,3.又P(X1),P(X2)×,P(X3)××1.所以X的分布列为X123P所以E(X)1×2×3×.4(2015·重庆,17)端午节吃粽子是我国的传统习俗设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个(1)求三种

4、粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望解(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A).(2)X的所有可能值为0,1,2,且P(X0),P(X1),P(X2).综上知,X的分布列为X012P故E(X)0×1×2×(个)5(2014·天津,16)某大学志愿者协会有6名男同学,4名女同学在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同)(1)求选出的3名同学是来自

5、互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望解(1)设“选出的3名同学是来自互不相同的学院”为事件A,则P(A).所以,选出的3名同学是来自互不相同学院的概率为.(2)随机变量X的所有可能值为0,1,2,3.P(Xk)(k0,1,2,3)所以,随机变量X的分布列是X0123P随机变量X的数学期望E(X)0×1×2×3×.6(2014·xx,17)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20

6、分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200分)设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了请运用概率统计的相关知识分析分数减少的原因解(1)X可能的取值为:10,20,100,200.根据题意,有P(X10)C××,P(X20)C××,P(X100)C××,P(X200)C××.所以X的分布列为X

7、1020100200P(2)设“第i盘游戏没有出现音乐”为事件Ai(i1,2,3),则P(A1)P(A2)P(A3)P(X200).所以,“三盘游戏中至少有一次出现音乐”的概率为1P(A1A2A3)11.因此,玩三盘游戏至少有一盘出现音乐的概率是.(3)X的数学期望为E(X)10×20×100×200×.这表明,获得分数X的均值为负,因此,多次游戏之后分数减少的可能性更大7(2014·山东,18)乒乓球台面被球网分隔成甲、乙两部分如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D.某次测试要求队员接到落点在甲上的来球后向乙回球

8、规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分对落点在A上的来球,队员小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和的分布列与数学期望解(1)记Ai为事件“小明对落点在A上的来球回球的得分为i分”(i0,1,3),则P(A3),P(A1),P(A0)1;记Bi为事件“小明对落点在B上的来球回球的得分为i分”(i0,1,3),则P(B3),P(B1),P(B0)1.

9、记D为事件“小明两次回球的落点中恰有一次的落点在乙上”由题意,DA3B0A1B0A0B1A0B3,由事件的独立性和互斥性,P(D)P(A3B0A1B0A0B1A0B3)P(A3B0)P(A1B0)P(A0B1)P(A0B3)P(A3)P(B0)P(A1)P(B0)P(A0)P(B1)P(A0)P(B3)××××,所以小明两次回球的落点中恰有一次的落点在乙上的概率为.(2)由题意,随机变量可能的取值为0,1,2,3,4,6,由事件的独立性和互斥性,得P(0)P(A0B0)×,P(1)P(A1B0A0B1)P(A1B0)P(A0B1)×&

10、#215;,P(2)P(A1B1)×,P(3)P(A3B0A0B3)P(A3B0)P(A0B3)××,P(4)P(A3B1A1B3)P(A3B1)P(A1B3)××,P(6)P(A3B3)×.可得随机变量的分布列为:012346P所以数学期望E()0×1×2×3×4×6×.8(2014·重庆,18)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片(1)求所取3张卡片上的数字完全相同的概率;(

11、2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望(注:若三个数a,b,c满足abc,则称b为这三个数的中位数)解(1)由古典概型中的概率计算公式知所求概率为p.(2)X的所有可能值为1,2,3,且P(X1),P(X2),P(X3),故X的分布列为X123P从而E(X)1×2×3×.9(2014·江西,21)随机将1,2,2n(nN*,n2)这2n个连续正整数分成A,B两组,每组n个数A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记a2a1,b2b1.(1)当n3时,求的分布列和数学期望;(2)令C表示事件“与的取值恰好相等

12、”,求事件C发生的概率P(C);(3)对(2)中的事件C,C表示C的对立事件,判断P(C)和P(C)的大小关系,并说明理由解(1)当n3时,的所有可能取值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有C20种,所以的分布列为2345PE()2×3×4×5×.(2)和恰好相等的所有可能取值为:n1,n,n1,2n2.又和恰好相等且等于n1时,不同的分组方法有2种;和恰好相等且等于n时,不同的分组方法有2种;和恰好相等且等于nk(k1,2,n2)(n3)时,不同的分组方法有2C种;所以当n2时,P(C),当n3时,P(C).(3)由(2

13、)知当n2时,P(),因此P(C)>P()而当n3时,P(C)<P(),理由如下:P(C)<P()等价于.1°当n=3时,式左边=4(2+)=4(2+2)=16,右边=C=20,所以式成立.2°假设n=m(m3)时式成立,那么,当n=m+1时,左边=<C·<C右边即当nm1时式也成立综合1°,2°得:对于n3的所有正整数,都有P(C)<P(C)成立10(2013·天津,16)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片

14、(假设取到任何一张卡片的可能性相同)(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望解(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A,则P(A).所以取出的4张卡片中,含有编号为3的卡片的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(X1),P(X2),P(X3),P(X4).所以随机变量X的分布列是X1234P随机变量X的数学期望E(X)1×2×3×4×.11(2013·北京,16)下图是某市3月1日至14日的空气质量指数趋势图,空

15、气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染某人随机选择3月1日至3月13日的某一天到达该市,并停留2天(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解设Ai表示事件“此人于3月i日到达该市”(i1,2,13)根据题意,P(Ai),且AiAj(ij)(1)设B为事件“此人到达当日空气质量重度污染”,则BA5A8.所以P(B)P(A5A8)P(A5)P(A8).(2)由题意可知,X的所有可能取值为0,1,2,且P(X1)P(A3A

16、6A7A11)P(A3)P(A6)P(A7)P(A11),P(X2)P(A1A2A12A13)P(A1)P(A2)P(A12)P(A13),P(X0)1P(X1)P(X2).所以X的分布列为X012P故X的期望E(X)0×1×2×.(3)从3月5日开始连续三天的空气质量指数方差最大12(2013·江西,18)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X0就参加学校合唱团,否则就参加学校排球队(

17、1)求小波参加学校合唱团的概率;(2)求X的分布列和数学期望解(1)从8个点中任取两点为向量终点的不同取法共有C28种,X0时,两向量夹角为直角共有8种情形,所以小波参加学校合唱团的概率为P(X0).(2)两向量数量积X的所有可能取值为2,1,0,1,X2时,有2种情形;X1时,有8种情形;X1时,有10种情形所以X的分布列为:X2101PE(X)(2)×(1)×0×1×.13.(2013·湖南,18)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该

18、种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望解(1)所种作物总株数N1234515,其中三角形地块内部的作物株数为3,边界上的作物株数为12.从三角形地块的内部和边界上分别随机选取一株的不同结果有CC36种,选取的两株作物恰好“相近”的不同结果有3328种故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为.(2)先

19、求从所种作物中随机选取的一株作物的年收获量Y的分布列因为P(Y51)P(X1),P(Y48)P(X2),P(Y45)P(X3),P(Y42)P(X4),所以只需求出P(Xk)(k1,2,3,4)即可记nk为其“相近”作物恰有k株的作物株数(k1,2,3,4),则n12,n24,n36,n43.由P(Xk)得P(X1),P(X2),P(X3),P(X4).故所求的分布列为Y51484542P所求的数学期望为E(Y)51×48×45×42×46.14(2013·新课标全国,19)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500

20、元,未售出的产品,每1 t亏损300元根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示,经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100X150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X100,110),则取X105,且X105的概率等于需求量落入100,100)的频率),求T的数学期望解(1)

21、当X100,130)时,T500X300(130X)800X39 000,当X130,150时,T500×13065 000.所以T(2)由(1)知利润T不少于57 000元当且仅当120X150.由直方图知需求量X120,150的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.(3)依题意可得T的分布列为T45 00053 00061 00065 000P0.10.20.30.4所以E(T)45 000×0.153 000×0.261 000×0.365 000×0.459 400.15(2013

22、3;辽宁,19)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立用X表示张同学答对题的个数,求X的分布列和数学期望解(1)设事件A“张同学所取的3道题至少有1道乙类题”,则有“张同学所取的3道题都是甲类题”因为P(),所以P(A)1P().(2)X所有的可能取值为0,1,2,3.P(X0)C···;P(X1)C···C··

23、3;;P(X2)C···C···;P(X3)C···.所以X的分布列为X0123P所以E(X)0×1×2×3×2.16(2012·陕西,20)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:办理业务所需的时间(分)12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人

24、数,求X的分布列及数学期望解设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:Y12345P0.10.40.30.10.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则事件A对应三种情形:第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;第一个和第二个顾客办理业务所需的时间均为2分钟所以P(A)P(Y1)P(Y3)P(Y3)P(Y1)P(Y2)P(Y2)0.1×0.30.3×0.10.4×0.40.22.(2)法一X所有可能的取值

25、为0,1,2.X0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X0)P(Y>2)0.5;X1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X1)P(Y1)P(Y>1)P(Y2)0.1×0.90.40.49;X2对应两个顾客办理业务所需的时间均为1分钟,所以P(X2)P(Y1)P(Y1)0.1×0.10.01.所以X的分布列为X012P0.50.490.01E(X)0×0.51×0.492×0.010.51.法二X所有可能的取值为0,1,2.X

26、0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X0)P(Y>2)0.5;X2对应两个顾客办理业务所需的时间均为1分钟,所以P(X2)P(Y1)P(Y1)0.1×0.10.01;P(X1)1P(X0)P(X2)0.49.所以X的分布列为X012P0.50.490.01E(X)0×0.51×0.492×0.010.51.考点二均值与方差1(2014·浙江,9)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m3,n3),从乙盒中随机抽取i(i1,2)个球放入甲盒中(a)放入i个球后,甲盒中含有红球的个数记为i(i1,2);(

27、b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i1,2)则()Ap1>p2,E(1)<E(2) Bp1<p2,E(1)>E(2)Cp1>p2,E(1)>E(2) Dp1<p2,E(1)<E(2)解析法一(特值法)取mn3进行计算、比较即可法二(标准解法)从乙盒中取1个球时,取出的红球的个数记为,则的所有可能取值为0,1,则P(0)P(11),P(1)P(12),所以E(1)1·P(11)2·P(12)1,所以p1;从乙盒中取2个球时,取出的红球的个数记为,则的所有可能取值为0,1,2,则P(0)P(21),P(1)P

28、(22),P(2)P(23),所以E(2)1·P(21)2P(22)3P(23)1,所以p2,所以p1>p2,E(1)<E(2),故选A.答案A2(2013·湖北,9)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)() A. B. C. D.解析由题意可知涂漆面数X的可能取值为0,1,2,3.由于P(X0),P(X1),P(X2),P(X3),故E(X)0×1×2×3×.答案B3(2011·上海,9)马老师从课本上抄

29、录一个随机变量的概率分布列如下表:x123P(x)?!?请小牛同学计算的数学期望尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同据此,小牛给出了正确答案E()_.解析令“?”为a,“!”为b,则2ab1.又E()a2b3a2(2ab)2.答案24(2011·浙江,15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的记X为该毕业生得到面试的公司个数若P(X0),则随机变量X的数学期望E(X)_.解析P(X0)×(1p)2,

30、p.则P(X1)×××××2,P(X2)×××2××,P(X3)××.则E(X)0×1×2×3×.答案5(2015·天津,16)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名从这8名运动员中随机选择4人参加比赛(1)设A为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出

31、的4人中种子选手的人数,求随机变量X的分布列和数学期望解(1)由已知,有P(A).所以,事件A发生的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(Xk)(k1,2,3,4)所以随机变量X的分布列为X1234P随机变量X的数学期望E(X)1×2×3×4×.6(2015·山东,19)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等)在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次得分规则如下:若抽取的“三位递增数”的三个数

32、字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1分;若能被10整除,得1分(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的分布列和数学期望E(X)解(1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意知,全部“三位递增数”的个数为C84,随机变量X的取值为:0,1,1,因此P(X0),P(X1),P(X1)1,所以X的分布列为X011P则E(X)0×(1)×1×.7(2015·湖南,18)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有

33、4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望解(1)记事件A1从甲箱中摸出的1个球是红球,A2从乙箱中摸出的1个球是红球,B1顾客抽奖1次获一等奖,B2顾客抽奖1次获二等奖,C顾客抽奖1次能获奖由题意,A1与A2相互独立,A12与1A2互斥,B1与B2互斥,且B1A1A2,B2A121A2,CB1B2.因为P(A1),P(A2),所以P(B1)P(A

34、1A2)P(A1)P(A2)×,P(B2)P(A121A2)P(A12)P(1A2)P(A1)P(2)P(1)P(A2)P(A1)(1P(A2)(1P(A1)P(A2)××.故所求概率为P(C)P(B1B2)P(B1)P(B2).(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,所以XB.于是P(X0)C,P(X1)C,P(X2)C,P(X3)C.故X的分布列为X0123PX的数学期望为E(X)3×.8(2014·安徽,17)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜

35、局数多者赢得比赛假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望)解用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,则P(Ak),P(Bk),k1,2,3,4,5.(1)P(A)P(A1A2)P(B1A2A3)P(A1B2A3A4)P(A1)P(A2)P(B1)P(A2)P(A3)P(A1)P(B2)·P(A3)P(A4)×××.(2)X的可能取值为2,3,4,5.P(X2)P(A1A2

36、)P(B1B2)P(A1)P(A2)P(B1)P(B2),P(X3)P(B1A2A3)P(A1B2B3)P(B1)P(A2)P(A3)P(A1)P(B2)·P(B3),P(X4)P(A1B2A3A4)P(B1A2B3B4)P(A1)P(B2)P(A3)P(A4)P(B1)·P(A2)P(B3)P(B4),P(X5)1P(X2)P(X3)P(X4).故X的分布列为X2345PE(X)2×3×4×5×.9(2014·福建,18)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值

37、的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:()顾客所获的奖励额为60元的概率;()顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由解(1)设顾客所获的奖励额为X.()依题意,得P(X60),即顾客所获的奖励额为60元的概率为.()依题意,得

38、X的所有可能取值为20,60.P(X60),P(X20),即X的分布列为X2060P所以顾客所获的奖励额的期望为E(X)20×60×40(元)(2)根据商场的预算,每个顾客的平均奖励额为60元所以,先寻找期望为60元的可能方案对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,4

39、0)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100PX1的期望为E(X1)20×60×100×60,X1的方差为D(X1)(2060)2×(6060)2×(10060)2×.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080PX2的期望为E(X2)40×60×80×60,X2的方

40、差为D(X2)(4060)2×(6060)2×(8060)2×.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.10(2014·辽宁,18)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X)解(1)设A1表示事件“日销售量不低

41、于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)(0.0060.0040.002)×500.6,P(A2)0.003×500.15,P(B)0.6×0.6×0.15×20.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X0)C·(10.6)30.064,P(X1)C·0.6(10.6)20.288,P(X2)C·0.62(10.6)0.432,P(X3)C·0.630.216.分

42、布列为X0123P0.0640.2880.4320.216因为XB(3,0.6),所以期望E(X)3×0.61.8,方差D(X)3×0.6×(10.6)0.72.11(2013·新课标全国,19)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为

43、优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望解(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A(A1B1)(A2B2),且A1B1与A2B2互斥,所以P(A)P(A1B1)P(A2B2)P(A1)P(B1|A1)P(A2)P(B2|A2)××.(2)X可能的取值为400,

44、500,800,并且P(X400)1,P(X500),P(X800).所以X的分布列为X400500800PE(X)400×500×800×506.25. 考点一抽样方法1(2015·陕西,2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A167 B137 C123 D93解析由题干扇形统计图可得该校女教师人数为:110×70%150×(160%)137.故选B.答案B2(2014·湖南,2)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三

45、种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()Ap1p2<p3 Bp2p3<p1Cp1p3<p2 Dp1p2p3解析因为采取简单随机抽样、系统抽样和分层抽取样本时,总体中每个个体被抽中的概率相等,故选D.答案D3(2014·广东,6)已知某地区中小学生人数和近视情况分别如图1和图2所示为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A200,20 B100,20 C200,10 D100,10解析由题图可知,样本容量等于(3 5004 5002 000)×

46、2%200;抽取的高中生近视人数为2 000×2%×50%20,故选A.答案A4(2013·湖南,2)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业务爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A抽签法 B随机数法C系统抽样法 D分层抽样法解析看男、女学生在学习兴趣与业余爱好是否存在明显差异,应当分层抽取,故宜采用分层抽样答案D5(2013·陕西,4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42人中,编号落入区间481,720的人

47、数为()A11 B12 C13 D14解析840÷4220,把1,2,840分成42段,不妨设第1段抽取的号码为l,则第k段抽取的号码为l(k1)·20,1l20,1k42.令481l(k1)·20720,得25k37.由1l20,则25k36.满足条件的k共有12个答案B6(2013·新课标全国,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A简单随机抽样 B按性别分层抽样C按学段分

48、层抽样 D系统抽样解析因为学段层次差异较大,所以在不同学段中抽取宜采用分层抽样答案C7(2014·天津,9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查已知该校一年级、二年级、三年级、四年级的本科生人数之比为4556,则应从一年级本科生中抽取_名学生解析×30060(名)答案608(2012·天津,9)某地区有小学150所,中学75所,大学25的现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_所学校,中学中抽取_所学校解析共有学校1507525

49、250所,小学中应抽取:30×18所,中学中应抽取:30×9所答案189考点二频率分布直方图与茎叶图1(2015·安徽,6)若样本数据x1,x2,x10的标准差为8,则数据2x11,2x21,2x101的标准差为()A8 B15 C16 D32解析法一由题意知,x1x2x1010x,s1,则(2x11)(2x21)(2x101)2(x1x2x10)n21,所以S22s1,故选C.答案C2(2015·重庆,3)重庆市2013年各月的平均气温()数据的茎叶图如下:则这组数据的中位数是()01228 9 2 5 80 0 0 3 3 81 2A19 B20 C

50、21.5 D23解析从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B.答案B3(2014·山东,7)为了研究某药品的疗效,选取若干名志愿者进行临床试验所有志愿者的舒张压数据(单位:kPa)的分组区间为12,13),13,14),14,15),15,16),16,17,将其按从左到右的顺序分别编号为第一组,第二组,第五组如图是根据试验数据制成的频率分布直方图已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A6 B8 C12 D18解析由题图可知,第一组和第二组的频率之

51、和为(0.240.16)×10.40,故该试验共选取的志愿者有50人所以第三组共有50×0.3618人,其中有疗效的人数为18612.答案C4(2014·陕西,9)设样本数据x1,x2,x10的均值和方差分别为1和4,若yixia(a为非零常数,i1,2,10),则y1,y2,y10的均值和方差分别为()A1a,4 B1a,4aC1,4 D1,4a解析x1,x2,x10的均值1,方差s4,且yixia(i1,2,10),y1,y2,y10的均值(y1y2y10)(x1x2x1010a)(x1x2x10)aa1a,其方差s(y1)2(y2)2(y10)2(x11)2

52、(x21)2(x101)2s4.故选A.答案A5(2013·福建,4)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:40,50),50,60),60,70),70,80),80,90),90,100加以统计,得到如图所示的频率分布直方图已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A588 B480 C450 D120解析由频率分布直方图知4060分的频率为(0.0050.015)×100.2,故估计不少于60分的学生人数为600×(10.2)480.答案B6(2012·陕西,6)从甲乙两个城市分

53、别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则()A甲<乙,m甲>m乙 B甲<乙,m甲<m乙C甲>乙,m甲>m乙 D甲>乙,m甲<m乙解析甲(41433030382225271010141818568),乙(42434831323434382022232327101218),甲<x乙,又m甲20,m乙29,m甲<m乙答案B7(2015·xx,2)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为_解析这组数据的平均数为(465876)6.答案68(2015·湖南,12)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示: 1314150 0 3 4 5 6 6 8 8 91 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 80 1 2 2 3 3 3若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是_解析由题意知,将135号分成7组,每组5名运动员,落在区间139,151的运动员共有4组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论