完整版等差数列的求和公式教学设计_第1页
完整版等差数列的求和公式教学设计_第2页
完整版等差数列的求和公式教学设计_第3页
完整版等差数列的求和公式教学设计_第4页
完整版等差数列的求和公式教学设计_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等差数列前n项和教学案例:一、教学设计思想本堂课的设计是以个性化教学思想为指导进行设计的.本堂课的教学设计对教材局部内容进行了有意识的选择和改组,为了表达个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中央,以老师为引导,以小组的合作 为主要学习方式.课堂结构个性化,让学生在探究中展现个性,在合作中促进学生的个性发展.在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功.二、学生情况与教材分析1、学生通过上一节的学习,已经了解了等差数列的定义,根本上掌握了通项公式,会 运用等差数列

2、的通项公式进行解题,因此只要简单地回忆上一节课的知识就可引入新课;2、几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此, 借助几何直观学习和理解数学,是数学学习中的重要方面.只有做到了直观上的理解,才是真正的理解.因此在教学中,要鼓励学生借助几何直观进行思考, 揭示研究对象的性质和关系,从而渗透了数形结合的数学思想.3、学习应该是学生积极主动的建构知识的过程,应该与学生熟悉的背景相联系.本课 要求学生通过自主地观察、讨论、归纳、反思来参与学习,熟悉和理解数学知识,学会发现 问题并尝试解决问题,在学习活动中进一步提升自己的水平.三、教学目标1、知识目标

3、(1) 掌握等差数列前 n项和公式,理解公式的推导方法;(2) 能较熟练应用等差数列前 n项和公式求和.2、水平目标经历公式的推导过程, 体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的水平.3、情感目标通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心, 增强学生学好数学心理体验,产生热爱数学的情感,体验在学习中获得成功.四、教学重点、难点1、等差数列前n项和公式是重点.2、获得等差数列前 n项和公式推导的思路是难点.教学过程:1、引入新课(1) 复习师:上一节课中,我们学习了等差数列的定义及通项公式,知道了 公差d=,通项公式

4、an=(见黑板)生:(答复黑板上的问题)(2) 故事引入师:那等差数列的前n项和怎样求今天, 我们主要探讨等差数列的前 n项和公式.古算书张邱建算经?中卷有一道题:今有与人钱,初一人与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱师生共同读题师:题目当中我们可以得到哪些信息要解决的问题是什么生1:第一人给1钱,第二人给2钱,第三人给3钱,以后每个人都比前一个人多给一钱,共有100人,问共给了多少钱师:很好,问题已经呈现出来了,你能用数学符号语言表示吗生2:用为表示第n个人所得的钱数,那么由题意得:a =1也=2瓦=3,&0.=100只要求出 1+2+3+ +

5、100=?师:你能求出这个式子的值吗生 2.犹豫片刻1 + 100=101, 2+99=101 , 3+98=101 50+51=101 ,所求的和为101 X 122 =5050 .2师:对于这个算法,著名的数学家高斯10岁时曾很快就想出来了高斯的算法是:首项与末项的和: 1+100=101,第2项与倒数第2项的和:2+99=101 ,第3项与倒数第3项的和:3+98=101 ,第50项与倒数第50项的和:50+51=101 ,于是所求的和是101 X四0 =5050 2上面的问题可以看成是求等差数列 1, 2, 3,n,的前100项的和.在上面解决问题的过程中,我们发现所求的和可用首项、末

6、项及项数n来表示,且任意的第k项与倒数第k项的和都等于首项与末项的和,从中你有何启发我们如何去求一般等差数列的前n项和设计意图:通过情景引入活动、任务,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用得过程,其作用就在于提升学生的经验,使之连续地向形式的、抽象的数 学知识的转变.构筑在学生已有生活经验与生命体验根底之上的数学课程大大激发了学生“做数学的热情,数学课变得更生动、更活泼,更能引发学生的兴趣.新教材中增添了一些数学史的知识,从课改的一些举措上我感到在数学教学过程中,应适时掀起 数学史的教学盖头.向同学们介绍了张邱建算经?和高斯及他的算法,讲课的过程中适当插入数学史,为数学教学输

7、入了新鲜血液.培养学生的数学文化,营造浓郁的“人 文气氛.师:设等差数列 如的前n项和为Sn,那么Sn =a +a2 + - +a?生3:直接给出公式由刚刚问题的结果可知§ =na1侦2师:非常好,由具体的推广到一般, 这也是研究数学的一种思想方法由特殊到一般,但是这 种方法是猜想、推测,是不完全归纳.数学公式的得出需要严谨的推理过程和相关的理论依据.你能否推导这个公式生4: Sn =a +an +a2 +a + + ?遇到困惑,最后一组怎样表示是剩一项还是两项师:我们再回忆一下刚刚解决的问题,共有100项,两两分组正好分为 50组,如果1+2+3+ +101 = ? n项时又应如何

8、分组最后一组应怎样表示生 4 继续答复:1 + 101=102 , 2+100=102 , 3+99=102- 50+52=102 , 51 = 122 =1 *101 22共有50组多出第51项n分奇偶性讨论,n为偶数时正好分成n组,n为奇数时分成 里!组还多一项 22,当 n 为偶数时,Sn = a +an+a2+an+ +an+an 22 1=na +an一 2当 n 为奇数时,Sn =a +an +a2 +anjt十. +a怛+a +3七、 a a= a +an +a2 +an + +a +a也+ -2=na +an一 2师:好通过分类讨论我们得出了等差数列an的前n项和Sn公式,从所

9、得的结果看无论n是奇数还是偶数Sn的公式一样.那么我们是否可以避开讨论 n的奇偶性去推导呢怎样 出现首末两项的和师:下面我们从一个稍稍简单一点的等差数列来推导探讨学生观察幻灯片上以等差数列逐层排列的一堆钢管.师:如何求课件演示:引导学生设想,如果将钢管倒置,能得到什么启示生:每一层都和上一层是一样多的.一共有8层,所以为8X 4+11,但一共有两堆,所以为8/4 + 11师:那如果如以下图所示共有 n层,第一层为a1,第n层为an,请大家来猜想一下这个 呈等差数列排列的钢管的总和 sn等于多少_ 响+*师:所以我们还可以如何求等差数列通项公式?解.钢管的数量为:顷4 + 11)等差数列前.顼京

10、和公式网(/+%)生 5:Sn =a +a2 + - +an将上面两式左右两边分别相加得2Sn =(角 +an)+(a2 +an)+ +& + %)= n(ai an). un(ai an)2师:此种方法简洁明了,且避开讨论n的奇偶性,我们将这种方法称为“逆序相加法,在以后解决数列问题是也经常运用“逆序相加法,主要运用了等差数列下标等距性质.(有学生举手)生6:我用另外一种方法得出的结果不一样§ =a1 +a2 + - +an =a +d +a +2d + - a1 +(n 1)d=nq +1+2+3+ (nT)】d=na1n(n1)d2师:这个结果对否为何会有两个公式它们之

11、间有联系吗?大家一起发现Snn(ai an)n 口 - a1 - (n 1)d I n(n 1),=na +d222等差数列an前n项和公式:&十* 件d师总结:我们得到了两个计算等差数列前n项和的公式.由公式可知,只要知道a1, n, an,d这四个量中的三个就可以求出等差数列前n项和Sn.设计意图:新课标指出“学生的学习过程就是在教师指导下的再创造的过程在教学的过程中,教师要指导学法,把教与学的过程很好地统一起来,想方法鼓励学生积极参与,大胆设疑、质疑、释疑、辨错、修正,突出过程教学.教师同通过问题情境或学习情境以诱发他们进行探索与问题的解决活动.应用举例例1等差数列一10, 6,

12、 2, 2前多少项的和是 54?解:设题中的等差数列为 a,前n项和为Sn,那么a = 0 d =6-4= , Sn=54由题意得-10 仰"4=5422n 一6n -27 =0解得几=9,山=一3 舍.前9项的和为54.师总结:量a1,d,Sn,求n,合理选用公式.思想方法:方程思想.设计意图:学以致用,直接运用公式加深对公式的熟悉和理解.主要通过方程的思想进行基本量的运算.注意解题格式和标准.例2求集合M =<m m=7n,n N*,m <10.中元素的个数,并求这些元素的和.解:由 7n <100,得 n c100,即 n <14% 77由于满足不等式的

13、正整数n共有14个,所以集合 M中的元素共有14个,将他们从小到大列出,得 7, 7X 2, 7X 3,7X 14,这个数列是等差数列,记为 妇,其中a =7,a14=98.Sm4 (7 98)735答:集合M中的元素共有14个元素,它们的和等于 735.变式 1: M =mm=7n,nN*,n<100分析:n<100, M中有99个元素,分别为 7, 7X 2, 7X 3,7X 99,变式2:在1到100中被7除余1的正整数共有多少个它们的和是多少分析:设m是满足条件的数,那么 m=7n+1,且m<100, n w N或 m=7n-6,且 m<100, n 在 N *设计意图:高中数学课程倡导自主探索、动手实践、合作交流等学习数学的方法,这要求我们转变教学观念,丰富教学形式,改进学生的学习方式,加大课堂教学的研究性、开放性和自主性,在开展

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论