初中的数学数与式提高练习与难题和培优综合题压轴题(含解析汇报)_第1页
初中的数学数与式提高练习与难题和培优综合题压轴题(含解析汇报)_第2页
初中的数学数与式提高练习与难题和培优综合题压轴题(含解析汇报)_第3页
初中的数学数与式提高练习与难题和培优综合题压轴题(含解析汇报)_第4页
已阅读5页,还剩45页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、标准实用初中数学数与式提高练习与难题和培优综合题压轴题(含解析 )一选择题(共10 小题)1设 y=|x 1|+|x+1| ,则下面四个结论中正确的是()A y 没有最小值B只有一个 x 使 y 取最小值C有限个 x(不止一个) y 取最小值D有无穷多个 x 使 y 取最小值2下列说法错误的是()A 2 是 8 的立方根 B±4 是 64 的立方根C是的平方根D4 是的算术平方根3用同样多的钱,买一等毛线,可以买3 千克;买二等毛线,可以买4 千克,如果用买 a 千克一等毛线的钱去买二等毛线,可以买()Aa 千克Ba 千克 Ca 千克D a 千克4如图,长方形内的阴影部分是由四个半圆

2、围成的图形,则阴影部分的面积是()ABCD5已知 a,b , c 分别是ABC 的三边长,且满足2a 4 +2b 4+c 4=2a 2c2+2b 2c2 ,则ABC 是()A等腰三角形 B等腰直角三角形C直角三角形 D 等腰三角形或直角三角形文案大全标准实用6现有一列式子:55 2 45 2; 555 2 445 2 ; 5555 2 4445 2 则第个式子的计算结果用科学记数法可表示为()A 1.1111111 ×10 16B1.1111111 ×10 27C 1.111111 ×10 56 D 1.1111111 ×10 177如图,一个瓶身为圆柱

3、体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的()ABCD8如果 m 为整数,那么使分式的值为整数的 m 的值有()A2 个B3 个 C4 个D5 个9若 4与可以合并,则 m 的值不可以是()ABCD10 设 a 为的小数部分, b 为的小数部分则的值为()A+1B+1C1D+1二填空题(共12 小题)11与最接近的整数是12规定用符号 m 表示一个实数 m 的整数部分,例如: =0 ,3.14=3 按此规定 的值为文案大全标准实用13若,则=14 如图,边长为m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个

4、矩形,若拼成的矩形一边长为4 ,则另一边长为15已知 A=2x+1,B 是多项式,在计算 B+A 时,某同学把 B+A 看成了 B÷A ,结果得 x2 3 ,则 B+A=16若 m 为正实数,且 m =3 ,则 m 2 =17因式分解: x2 y 2+6y 9=18已知: x2 x 1=0 ,则 x3+2x 2+2002的值为19若=+,对任意自然数n都成立,则 a=,b=;计算: m=+ +=20已知三个数 x,y ,z 满足= 3,= ,= 则的值为21无论 x 取任何实数,代数式都有意义,则 m 的取值范围为22化简二次根式的正确结果是三解答题(共18 小题)23 对于任何实数

5、,我们规定符号的意义是:=ad bc 按照这个规定请你计算:当x2 3x+1=0时,的值24 分解因式: a2 +4b 2+c 44ab 2ac 2 +4bc 2 1 文案大全标准实用25 (1)计算:( 2)先化简,再求值:,其中26 若实数 x,y 满足( x )(y )=2016 ( 1)求 x,y 之间的数量关系;( 2)求 3x 2 2y 2 +3x 3y 2017 的值27已知 x,y 都是有理数,并且满足,求的值28已知+=0 ,求的值29已知 a2+b 2 4a 2b+5=0 ,求的值30 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:()

6、47;=( 1)求所捂部分化简后的结果:( 2)原代数式的值能等于 1 吗?为什么?31 阅读下列材料,解决后面两个问题:我们可以将任意三位数(其中 a、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且a0 ),显然=100a+10b+c;我们形如和的两个三位数称为一对“姊妹数” (其中 x、y 、z 是三个连续的自然数)如:123和 321 是一对姊妹数, 678 和 876 是一对“姊妹数”( 1)写出任意两对“姊妹数” ,并判断 2331 是否是一对“姊妹数”的和;( 2)如果用 x 表示百位数字,求证:任意一对“姊妹数”的和能被37 整除文案大全标准实用32 若我们规定三

7、角“”表示为:abc ;方框“”表示为:(x m +y n )例如:=1 ×19 ×3 ÷(2 4+3 1 ) =3 请根据这个规定解答下列问题:( 1)计算:=;( 2)代数式为完全平方式,则k=;( 3)解方程:=6x 2+7 33 阅读与计算:对于任意实数 a,b ,规定运算 的运算过程为:ab=a 2+ab 根据运算符号的意义,解答下列问题( 1)计算( x 1) (x+1 );( 2)当 m (m+2 ) = ( m+2 )m 时,求 m 的值34 我国古代数学家秦九韶在数书九章中记述了“三斜求积术”,即已知三角形的三边长,求它的面积用现代式子表示即为:

8、 (其中 a、b 、c 为三角形的三边长, s 为面积)而另一个文明古国古希腊也有求三角形面积的海伦公式:s= (其中 p=)( 1)若已知三角形的三边长分别为 5,7 ,8 ,试分别运用公式和公式,计算该三角形的面积 s;( 2)你能否由公式推导出公式?请试试文案大全标准实用35 斐波那契(约1170 1250 ,意大利数学家)数列是按某种规律排列的一列数,他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n 为正整数)个数 an 可表示为 ()n ()n ( 1)计算第一个数 a1;( 2)计算第二个数 a2;( 3)证明连续三个数之间 an 1, an ,an+1 存在以下关系

9、: an+1 an =a n 1(n 2);( 4)写出斐波那契数列中的前8 个数36 问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一 所谓“作差法”:就是通过作差、变形,并利用差的符号确定它们的大小,即要比较代数式 M 、N 的大小,只要作出它们的差M N ,若 M N 0,则 M N;若 M N=0 ,则 M=N ;若 M N 0,则 M N问题解决如图 1 ,把边长为 a+b ( ab )的大正方形分割成两个边长分别是a、 b 的小正方形及两个矩形, 试比较两个小正方形面积之和M 与两个矩形面积

10、之和N 的大小解:由图可知: M=a 2 +b 2, N=2ab M N=a 2+b 2 2ab= (ab )2 ab ,(ab )2 0 M N0文案大全标准实用M N类比应用( 1)已知小丽和小颖购买同一种商品的平均价格分别为元 / 千克和元/千克( a、b 是正数,且ab),试比较小丽和小颖所购买商品的平均价格的高低( 2)试比较图 2 和图 3 中两个矩形周长M 1 、N 1 的大小( b c)联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图 4 所示(其中 b ac0),售货员分别可按图 5、图 6、图 7 三种方法进行捆绑,问哪种方法用绳最短?哪种方

11、法用绳最长?请说明理由37 附加题:若a=,b=,试不用将分数化小数的方法比较a、b 的大小观察 a、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论38 解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题例如,原问题是“若矩形的两边长分别文案大全标准实用为 3 和 4,求矩形的周长”,求出周长等于 14 后,它的一个“逆向”问题可以是“若矩形的周长为 14 ,且一边长为 3 ,求另一边的长”;也可以是“若矩形的周长为 14 ,求矩形面积的最大值” ,等等(1)设 A=,B=,求 A 与 B 的积;( 2)提出( 1)的一个“逆向”

12、问题,并解答这个问题39 能被 3 整除的整数具有一些特殊的性质:( 1)定义一种能够被3 整除的三位数的“ F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数例如=213时,则: 21336( 23 +1 3+3 3=36 ) 243 ( 33 +6 3 =243 )数字 111 经过三次“ F”运算得,经过四次“ F”运算得,经过五次“ F”运算得,经过 2016 次“ F”运算得( 2)对于一个整数,如果它的各个数位上的数字和可以被3 整除,那么这个数就一定能够被 3 整除,例如,一个四位数,千位上的数字是a,百位上的数字是b ,十位上的数字为c,个为上的数字为d ,如果 a+

13、b+c+d可以被 3 整除,那么这个四位数就可以被3 整除你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可)40 观察并验证下列等式:13+2 3= (1+2 )2=9 ,13+2 3+3 3= (1+2+3 )2=36 ,13+2 3+3 3+4 3= (1+2+3+4)2=100 ,( 1)续写等式: 1 3 +2 3 +3 3+4 3+5 3=;(写出最后结果)( 2)我们已经知道1+2+3+n=n( n+1 ),根据上述等式中所体现的规律,文案大全标准实用猜想结论: 13+2 3+3 3 + (n 1)3 +n 3 =;(结果用因式乘积表示)( 3)利用( 2)中得到的结论计

14、算:33+6 3+9 3+ +57 3+60 3 13 +3 3+5 3+ + ( 2n 1) 3( 4)试对( 2)中得到的结论进行证明文案大全标准实用初中数学数与式提高练习与难题和培优综合题压轴题( 含解析 )参考答案与试题解析一选择题(共10 小题)1(2009 秋 ? 和平区校级期中)设 y=|x 1|+|x+1| ,则下面四个结论中正确的是()A y 没有最小值B只有一个 x 使 y 取最小值C有限个 x(不止一个) y 取最小值D有无穷多个 x 使 y 取最小值【分析】 根据非负数的性质,分别讨论x 的取值范围,再判断y 的最值问题【解答】 解:方法一:由题意得:当x 1 时, y

15、= x+1 1 x= 2x ;当 1x1 时, y= x+1+1+x=2;当 x1 时, y=x 1+1+x=2x ;故由上得当 1x 1 时, y 有最小值为 2 ;故选 D方法二:由题意, y 表示数轴上一点 x,到 1,1 的距离和,这个距离和的最小值为 2 ,此时 x 的范围为 1x1 ,故选 D【点评】本题主要考查利用非负数的性质求代数式的最值问题, 注意按未知数的取值分情况讨论文案大全标准实用2(2016 秋 ? 郑州月考)下列说法错误的是()A 2 是 8 的立方根 B±4 是 64 的立方根C是的平方根D4 是的算术平方根【分析】 正数平方根有两个,算术平方根有一个,

16、立方根有一个【解答】 解: A、2 是 8 的立方根是正确的,不符合题意;B、4 是 64 的立方根,原来的说法错误,符合题意;C、是的平方根是正确的,不符合题意;D、 4 是的算术平方根是正确的,不符合题意故选: B【点评】 本题考查立方根,平方根和算术平方根的概念3(2016 秋 ? 全椒县期中)用同样多的钱,买一等毛线,可以买3 千克;买二等毛线,可以买4 千克,如果用买a 千克一等毛线的钱去买二等毛线,可以买()Aa 千克Ba 千克 Ca 千克D a 千克【分析】先设出买 1 千克的一等毛线花的钱数和买1 千克的二等毛线花的钱数,列出一等毛线和二等毛线的关系,再乘以a 千克即可求出答案

17、【解答】解:设买 1 千克的一等毛线花x 元钱,买 1 千克的二等毛线花y 元钱,根据题意得:3x=4y ,则 = ,故买 a 千克一等毛线的钱可以买二等毛线a文案大全标准实用故选 A【点评】此题考查了列代数式,解题的关键是认真读题,找出等量关系,列出代数式,是一道基础题4(2009 ? 江干区模拟)如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()ABCD【分析】观察图形可知:阴影部分的面积= 大圆的面积小圆的面积,大圆的直径 =a ,小圆的直径 =,再根据圆的面积公式求解即可【解答】 解:据题意可知:阴影部分的面积S= 大圆的面积 S1小圆的面积 S2 ,据图可知大圆的

18、直径 =a ,小圆的半径 =,阴影部分的面积 S=( )2 () 2 =(2ab b 2)故选 A【点评】此题主要考查学生的观察能力,只要判断出两圆的直径, 问题就迎刃而解本题涉及到圆的面积公式、 整式的混合运算等知识点,是整式的运算与几何相结合的综合题5(2015 ? 湖北校级自主招生)已知a, b ,c 分别是ABC 的三边长,且满足2a 4+2b 4+c 4 =2a 2 c2 +2b 2 c2 ,则ABC 是()A等腰三角形 B等腰直角三角形文案大全标准实用C直角三角形 D 等腰三角形或直角三角形【分析】 等式两边乘以 2 ,利用配方法得到( 2a 2 c2 )2 + (2b 2c2)

19、2=0 ,根据非负数的性质得到2a 2 c2 =0 ,2b 2c2 =0 ,则 a=b ,且 a2 +b 2=c 2然后根据等腰三角形和直角三角形的判定方法进行判断【解答】 解:2a 4+2b 4+c 4=2a 2c2+2b 2 c2 ,4a 4 4a2 c2 +c 4 +4b 4 4b 2c2 +c 4 =0 ,(2a 2 c2)2 + (2b 2 c2 )2 =0 ,2a 2 c2 =0 , 2b 2 c2=0 ,c=a, c=b ,a=b ,且 a2 +b 2=c 2ABC 为等腰直角三角形故选: B【点评】 本题考查了因式分解的应用,利用完全平方公式是解决问题的关键6 (2015 ?

20、河北模拟)现有一列式子:55 2 45 2 ; 555 2 445 2; 5555 2 4445 2 则第个式子的计算结果用科学记数法可表示为()A 1.1111111 ×10 16B1.1111111 ×10 27C 1.111111 ×10 56 D 1.1111111 ×10 17【分析】根据题意得出一般性规律,写出第 8 个等式,利用平方差公式计算,将结果用科学记数法表示即可【解答】解:根据题意得:第 个式子为555555555 2 444444445 2=( 555555555+444444445)×( 555555555 44444

21、4445 ) =1.1111111×文案大全标准实用10 17故选 D【点评】 此题考查了因式分解运用公式法,以及科学记数法表示较大的数,熟练掌握平方差公式是解本题的关键7(2016春 ? 雁江区期末)如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的()ABCD【分析】设第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积, 让求得的墨水的体积除以玻璃瓶容积即可【解答】 解:设规则瓶体部分的底面积为S倒立放置时,空余部分的体积为bS ,正立放置时,

22、有墨水部分的体积是aS因此墨水的体积约占玻璃瓶容积的=,故选 A【点评】考查列代数式; 用墨水瓶的底面积表示出墨水的容积及空余部分的体积是解决本题的突破点文案大全标准实用8(2016 秋 ? 乐亭县期末)如果 m 为整数,那么使分式的值为整数的 m 的值有()A2 个B3 个 C4 个D5 个【分析】 分式,讨论就可以了即 m+1 是 2 的约数则可【解答】 解:=1+,若原分式的值为整数,那么m+1= 2, 1,1 或 2 由 m+1= 2 得 m= 3 ;由 m+1= 1 得 m= 2 ;由 m+1=1 得 m=0 ;由 m+1=2 得 m=1 m= 3, 2 ,0,1 故选 C【点评】

23、本题主要考查分式的知识点,认真审题,要把分式变形就好讨论了9(2004 ? 十堰)若 4与可以合并,则m 的值不可以是()ABCD【分析】根据同类二次根式的定义,把每个选项代入两个根式化简,检验化简后被开方数是否相同【解答】解:A、把代入根式分别化简:4=4=,=,故选项不符合题意;B、把代入根式化简: 4=4=;=,故选项不合题意;文案大全标准实用C、把代入根式化简: 4=4=1 ;=,故选项不合题意;D、把代入根式化简: 4=4=,=,故符合题意故选 D【点评】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式需要注意化简前, 被开方数不

24、同也可能是同类二次根式10 (2016 ? 邯郸校级自主招生)设 a 为的小数部分,b 为的小数部分则的值为()A+1B+1C1D+1【分析】 首先分别化简所给的两个二次根式,分别求出a、b 对应的小数部分,然后代、化简、运算、求值,即可解决问题【解答】 解:=,a 的小数部分 = 1;=文案大全标准实用= ,b 的小数部分 =2 , =故选 B【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答二填空题(共12 小题)11 (2014 ? 雨花区校级自主招生)与最接近的整数是6【分析】 先利用完全平方公式将分母化简变形,再进行分母有理化即可

25、【解答】解:=5.828 ,与最接近的整数是 6 故答案为: 6【点评】本题主要考查了无理数的估算,先利用完全平方公式将分母化简,再分母有理化是解决问题的关键文案大全标准实用12 ( 2012 ? 常德)规定用符号 m 表示一个实数 m 的整数部分,例如: =0 ,3.14=3按此规定 的值为4 【分析】 求出的范围,求出+1 的范围,即可求出答案【解答】 解:3 4 ,3+1 +1 4+1,4 +1 5,+1=4 ,故答案为: 4【点评】 本题考查了估计无理数的应用,关键是确定+1 的范围,题目比较新颖,是一道比较好的题目13 (2013 ? 德阳)若,则=6【分析】 根据非负数的性质先求出

26、a2 +、 b 的值,再代入计算即可【解答】 解:,+ (b+1 )2 =0 ,a2 3a+1=0 ,b+1=0 ,a+=3 ,(a+) 2=3 2,a2+=7 ;b= 1 =7 1=6 故答案为: 6文案大全标准实用【点评】本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出 a2 +的值14 ( 2012 ? 佛山)如图,边长为 m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4 ,则另一边长为2m+4【分析】根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解【解答】 解:设拼成的矩形的另一边长为x,则

27、 4x= ( m+4 )2 m 2 = ( m+4+m )(m+4 m ),解得 x=2m+4 故答案为: 2m+4 【点评】本题考查了平方差公式的几何背景, 根据拼接前后的图形的面积相等列式是解题的关键15 ( 2012 ? 河南模拟)已知 A=2x+1 ,B 是多项式,在计算 B+A 时,某同学把B+A 看成了 B÷A ,结果得 x23 ,则 B+A=2x 3+x 2 4x 2【分析】 由 B 除以 A 商为 x 23,且 A=2x+1 ,利用被除数等于商乘以除数,表示出 B,利用多项式乘以多项式的法则计算,确定出B,再由 B+A 列出关系文案大全标准实用式,去括号合并后即可得到

28、结果【解答】 解:根据题意列出B= ( 2x+1 )(x23)=2x 3 6x+x 23=2x 3+x 26x 3 ,则 B+A= (2x3 +x 26x 3)+ (2x+1 )=2x 3 +x 24x 2故答案为: 2x3 +x 2 4x 2【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键16 (2011 ? 乐山)若 m 为正实数,且 m =3 ,则 m 2 = 3【分析】 由,得 m 2 3m 1=0 ,即= ,因为 m 为正实数,可得出 m 的值,代入,解答出即可;【解答】 解:法一:由得,得 m 2 3m 1=0 ,即= ,m

29、 1 =,m 2 =,因为 m 为正实数, m=,= ()()=3 ×(),=3×,= ;法二:由平方得: m 2 + 2=9 ,m 2 +2=13 ,即( m+) 2=13 ,又 m 为正实数,文案大全标准实用m+=,则= (m+)(m )=3故答案为:【点评】 本题考查了完全平方公式、平方差公式,求出m 的值代入前,一定要把代数式分解完全,可简化计算步骤17 (2002 ? 益阳)因式分解: x2y 2 +6y 9=( x y+3 )(x+y 3)【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解本题后三项提取 1 后 y 2 6y+9 可运用完全平方公式,可

30、把后三项分为一组【解答】 解: x2 y2 +6y 9,=x 2( y 2 6y+9 ),=x 2( y 3)2 ,= ( x y+3 )(x+y 3)【点评】本题考查了用分组分解法进行因式分解难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三项分为一组18 (2002 ? 福州)已知: x2 x 1=0 ,则 x3+2x 2+2002的值为2003【分析】 把 2x 2 分解成 x2 与 x2 相加,然后把所求代数式整理成用x2 x 表示的形式,然后代入数据计算求解即可【解答】 解:x2 x 1=0 ,x2 x=1 , x3 +2x 2 +2002 ,文案大全标准实用= x

31、3 +x 2 +x 2+2002 ,= x( x2 x)+x 2+2002 ,= x+x 2+2002 ,=1+2002,=2003 故答案为: 2003 【点评】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要19 ( 2015 ? 梅州)若=+,对任意自然数 n 都成立,则a=,b=;计算: m=+=【分析】已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与 b 的值即可;原式利用拆项法变形,计算即可确定出m 的值【解答】解:=+=,可得 2n (a+b )+a b=1 ,即,解得: a=,b= ;m=(1+)=(1)

32、=,故答案为:;【点评】 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键20 (2013 ? 涟水县校级一模)已知三个数 x,y,z 满足= 3 ,=,=文案大全标准实用 则的值为 6【分析】先将该题中所有分式的分子和分母颠倒位置,化简后求出的值,从而得出代数式的值【解答】 解:= 3,=,= , =,= ,整理得, +=,+=,+=,+ + 得,+=+=,= ,= ,= 6故答案为: 6【点评】本题考查了分式的化简求值, 将分式的分子分母颠倒位置后计算是解题的关键21 (2013 ? 六盘水)无论 x 取任何实数,代数式都有意义,则m 的取值范围为m 9【分析】 二次根式的被开方数是

33、非负数,即x2 6x+m=(x3)2 9+m 0,所以( x3)2 9m 通过偶次方( x3 )2 是非负数可求得9 m 0 ,则易求 m 的取值范围【解答】 解:由题意,得x2 6x+m 0 ,即( x3)2 9+m 0,(x3 ) 20 ,要使得( x3 )2 9+m 恒大于等于 0 ,文案大全标准实用m 9 0 ,m 9 ,故答案为: m 9【点评】考查了二次根式的意义和性质概念:式子(a0)叫二次根式性质:二次根式中的被开方数必须是非负数,否则二次根式无意义22 (2009 ? 琼海模拟)化简二次根式的正确结果是【分析】 根据二次根式的性质及定义解答【解答】 解:由二次根式的性质得a3

34、b 0aba0 ,b 0原式= a【点评】 解答此题,要弄清以下问题:1、定义:一般地,形如( a0 )的代数式叫做二次根式 2 、性质:=|a| 三解答题(共18 小题)23 (2010 ? 东莞校级一模)对于任何实数,我们规定符号的意义是:=ad bc 按照这个规定请你计算:当x2 3x+1=0时,的值【分析】应先根据所给的运算方式列式并根据平方差公式和单项式乘多项式的运算法则化简,再把已知条件整体代入求解即可【解答】 解:= ( x+1 )(x1 ) 3x (x 2),=x 2 1 3x2 +6x ,文案大全标准实用= 2x 2 +6x 1,x2 3x+1=0 ,x2 3x= 1 ,原式

35、= 2 (x2 3x ) 1=2 1=1 【点评】本题考查了平方差公式, 单项式乘多项式, 弄清楚规定运算的运算方法是解题的关键24 (2016 秋 ? 昌江区校级期末)分解因式:a2+4b 2+c 4 4ab 2ac 2+4bc 2 1 【分析】 先分组得到原式 = ( a2 +4b 2 4ab ) + ( 2ac 2 +4bc 2 )+ (c4 1 ),再根据完全平方公式,提取公因式法,平方差公式得到原式= (2b a)2 +2c 2( 2b a) + (c2+1 )( c2 1 ),再根据十字相乘法即可求解【解答】 解: a2+4b 2+c 4 4ab 2ac 2+4bc 2 1= (

36、a2 +4b 2 4ab )+ ( 2ac 2+4bc 2 )+ (c4 1 )= ( 2b a) 2+2c 2 (2b a)+ (c2 +1 )(c2 1 )= ( 2b a+c 2+1 )(2b a+c 2 1)【点评】本题考查了因式分解分组分解法,本题关键是式子分组, 以及熟练掌握完全平方公式,提取公因式法,平方差公式,十字相乘法的计算方法25(2013?黔西南州)(1)计算:( 2)先化简,再求值:,其中【分析】(1)先分别根据0 指数幂、负整数指数幂、有理数乘方的法则及特殊文案大全标准实用角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;( 2)先根据分式混合运算的法则

37、把原式进行化简,再把x 的值代入进行计算即可【解答】 解:(1)原式 =1 ×4+1+|2×|=4+1+|,=4+1+0,=5 ;( 2)原式 =当 x=3 时,原式 =【点评】本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键26 若实数 x,y 满足( x )(y )=2016 ( 1)求 x,y 之间的数量关系;( 2)求 3x 2 2y 2 +3x 3y 2017 的值【分析】( 1 )将式子变形后,再分母有理化得式: x=y+,同理得式: x+=y ,将两式相加可得结论;( 2)将 x=y 代入原式或式得: x2 =2016 ,代入所求

38、式子即可文案大全标准实用【解答】 解:(1)(x)(y)=2016 ,x=y+,同理得: x+=y , + 得: 2x=2y ,x=y ,( 2)把 x=y 代入得: x=x+,x2=2016 ,则 3x 2 2y 2+3x 3y 2017 ,=3x 2 2x2+3x 3x 2017 ,=x 2 2017 ,=2016 2017 ,= 1【点评】本题是二次根式的化简和求值,有难度,考查了二次根式的性质和分母有理化;二次根式中分母中含有根式时常运用分母有理化来解决,分母有理化常常是乘二次根式本身 (分母只有一项) 或与原分母组成平方差公式本题利用巧解将已知式变成两式,相加后得出结论27 (201

39、7 春 ? 启东市月考)已知 x,y 都是有理数,并且满足,求的值【 分 析 】 观 察 式 子 , 需 求 出x , y的 值, 因此 ,将 已 知等 式变 形 :,x,y 都是有理数,可得,求解并使原式文案大全标准实用有意义即可【解答】 解:,x,y 都是有理数, x2+2y 17 与 y+4 也是有理数,解得有意义的条件是xy,取 x=5 , y= 4,【点评】此类问题求解,或是转换式子,求出各个未知数的值, 然后代入求解或是将所求式子转化为已知值的式子,然后整体代入求解28 (2017 春 ? 滨海县月考)已知+=0 ,求的值【分析】 因为一个数的算术平方根是非负数,先由非负数的和等于0,求出 a、b 的值,把 a、b 代入并求出的值【解答】 解:0,0,又+=0 ,a,b +2=0 ,即 a=,b= 2a2+b 2 +7= ()2+ (2)2+7=5+4+4+5 4+4+7=25文案大全标准实用=5 【点评】本题考查了非负数的算式平方根和二次根式的化简解决本题的关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论