四川省绵阳市2020届高三4月线上学习评估数学(理)试题(扫描版)_第1页
四川省绵阳市2020届高三4月线上学习评估数学(理)试题(扫描版)_第2页
四川省绵阳市2020届高三4月线上学习评估数学(理)试题(扫描版)_第3页
四川省绵阳市2020届高三4月线上学习评估数学(理)试题(扫描版)_第4页
四川省绵阳市2020届高三4月线上学习评估数学(理)试题(扫描版)_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、秘密启用前【考试时间:2020年4月5日15: 00-17: 00绵阳市2017级线上学习质量评估理科数学注意事项:1 .答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2 .回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡 上写在本试卷上无效。3 .考试结束后,将答题卡交回.理科数学优题笫l页(共4页)一、选择题:本大题共12小题,每小题5分, 有一项是符合题目要求的。共60分。在每小题给出的四个选项中,只1 .已知集合/=卜1, o, 1, 2, 8=#21,贝ij/ns二D. (

2、0)A. 1, 2B. -1, 0, 1 C. -I, 1, 2)2 .若 a£R,则 “A2” 是 “|a|>2" 的A.充分而不必要条件C.充要条件B.必要而不充分条件D.既不充分又不必要条件3 .已知复数z满足z-(l-2i) = i,则z在复平面内对应的点在A.第一象限B.第二象限C.第三象限D.第四象限4 .从编号0, 1, 2,,”的80件产品中,采用系统抽样的方法抽取容量是10的样本, 若编号为58的产品在样本中,则该样本中产品的最大编号为A. 72B. 74C. 76D. 785 .已知双曲线G4一卷=1(4>0, >0)的离心率为2,则双

3、曲线。的渐近线方程为B. y = ±2xC. y = ±冬D. y = 土耳x6,在(2"a)s(其中*0)的展开式中,W的系数与R的系数相同,则。的值为C. -2D.7.已知 tan(a + ') = -3 > MO sin2a =44A,5D.8网r+户4被直线y = JJx + 2故得的劣孤所对的阴心角的大小为A anoB. 60°C. 90°D. 120°俯视图9.某木材加工厂需要加工一批球形滚珠.已知一块硬质木料的 三视图如图所示,正视图和俯视图都是边长为10cm的正方 形,现将该木料进行切削、打磨,加工成球形

4、滚珠,则能得 到的最大滚珠的半径最接近A. 3cmB. 2.5cmC. 5cmD. 4.5cm10. 2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游 景点为吸引游客,推出团体购票优惠方案如下表:购票人上门票价格13元/人11元/人9元/人两个旅游团队计划游览该景点.若分别购票,则共需支付门票费1290元;若合并成 一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为A. 20B. 30C. 353 11.如图,/BC 中,8C=2, RAB-BC = -9 彳。是XBC 的外 2接圆直径,则击.前=A. 1B. 212.

5、已知集合 =(x,刈尸/(X),若对于任意(xi,存在(X2,使得xg+y”=0成立,则称集合是“。集合”.给出下列5个集合: M=(x, y)尸:; M=(x, y)|尸彳J; A/=(x, y)y= Vl-.v2 ):(x, y)y= x2 - 2x + 2; M= (x, y)片cosx+siiu.其中是“C集合”的所有序号是 二、填空题,本大题共4小题每小题5分,共20分.A. D. ®©3已知函数/(幻弋::):'则"=J4.已知“丸>0, 112aH尸击 则当取当” 时,办取得於小值 理科数学试收第2贝(共4贝)15. 为准确把握市场规律

6、,某公司对其所属商品售价进行市场调杳和模型分析,发现该? 品一年内每件的售价按月近似呈/(x) = /sin(s + ) + 8的模型波动”为月份),口 知3月份每件代价达到最高90元,直到7月份每件售价变为最低50元.则根据模型 可知在10月份每件售价约为.(结果保留整数)16. 在校长为的正方体中,点七、F分别为线段庆85的中点, 则点A到平面EFC的距褥为、三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤.第1721题为必考 一题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17. (12 分)已知数列"满足“1=2,的

7、=24,且是等差数列.4(1)求服:(2)设%的前项和为求18. (12 分)3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物费供 不应求,某医疗器械厂开足马力,日夜生产防疫所需物品己知该厂有两条不同生产线A 和B生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件, 进行品质鉴定,鉴定成绩的茎叶图如下所示:A生产线生产的产品B生产线生产的产品1 293 2 13 4 5 589 8 6 4 2 2 1 1 002245667897888765546 6 8 96该产品的质量评价标准规定:鉴定成绩达到90, 100)的产品,质量等级为优秀;鉴定成绩

8、达到80, 90)的产品,质量等级为良好:鉴定成绩达到60, 80)的产品,质量等级 为合格.将这组数据的频率视为整批产品的概率.(1)从等级为优秀的样本中随机抽取两件,记X为来自8机器生产的产品数量,写 出X的分布列,并求X的数学期望:(2)请完成下面质量等级与生产线产品列联衰,并判断能不能在误差不超过0.05的 情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.A生产线的产品B生产线的产品合计良好以上合格合计n(ad-be)?(a + h)(c + d)(a + c)(b + d)尸优2 20.100.050.010.005ko2.7063.8416 6357,879理科数学试题

9、第3页(共4页)19. (12 分)如图,在四枝锥E-ABCD中,底面/"CO是菱形, 48060、G是边仞的中点.平而外平面/8C。, ”=2DE, 4力CT,线段时上的点“满足出川低证明:OE平面GMC:(2)求立线8G与平而GMC所成角的正弦值.20. (12 分)已知椭网氏3 +芯=1(°6<2)的离心率为二动直线/: y=kx与椭圆E交于点 2At B,与y轴交于点2 o为坐标原点,o是48中点.(1)若无=;,求408的面枳:(2)若试探究是否存在常数之,使得(1 + 4)5而-22丽而是定值?若存在, 求久的值;若不存在,请说明理由.21. (12 分)

10、已知函数f(x) = ln±(aR).(1)试讨论/(x)的单调性;(2)若函数在定义域上行两个极值点xi,2,试问,是否存在实数% 使得 %)+/(占)=5?(-)选考题:共10分。请考生在第22、23题中任选一题做答。如果多做,则按所做的 第一题记分.22. 选修 I:坐标系与参数方程(1。分)在以直角坐标原点。为极点,x轴正半轴为极轴的极坐标系中,过点P。,技)的直线I的极坐标方程为pcos(a+ -) = ->曲线C的方程为2asin<9-pcos2(9 = 0(n > 0).6 2(1)求直线/的参数方程和曲线C的直角坐标方程;(2)若直线/与曲线C分别交

11、于点M, M且附M,成等比数列.求”的VI.23.选修4-5:不等式选讲】(I。分)已知函数/(x)=|3x + 2|,解不笫式/3<4-(2)若Q0,不等式I 1“1-/(,&4 M成立,求实效。的取0,阀乩理科数学忒麹第4页(共4贝)绵阳市高中2017级线上学习质量评估理科数学参考答案及评分意见一、选择题(每题5分,共60分)1. C 2. A 3. B7. A 8. D 9. A二、填空题(每题5分,共20分)4. B5. C10. B11. A13. 214. 2. 8(对其中1个存3分)15.846. D12. C6理科数学参考答案第3页(共6页)三、解答题(共70分)

12、 17.解:(1设等差数列*的公差为止由题总得即3-1=2乩2分221解得k1,: =+ («-!)x</ = 1 + (;/-1)x1 = /, 4分2" 21即5分(2) Sn= I X2+2X23X23+-+ nX2n, :.2Sn = 1X 22+2 X 2M X 24+-+ n X2nd, 6 分两式相减可徨-$ = 1x2 + 22+23+= 2(l-2w)_w y+i 0分1-2(lf)x2i_2 , 即 S“ =(-l)x2"”+212 分18 .解:1从图可知,样本中优秀的产品有2件来自A生 工,3仪来门B生产线:r2P(x = () =

13、2. = 0.1, P(X = 1) = X的可能取值为0, 12. 1分 =0.6, (¥ = 2)=昌= 0.3BPX的分布列为:X012P0.10.60.3二 £(%) =0x0.1+ 1x0.6 + 2x03 = 1.26 分(2)由已知可得,2X2列联表为A生产线的产品B生产线的产品合计良好以上61218合格14822合计2020402(1一权)240x(12x14-6x8)2 40 ., Q41K = «3.636 < 3.841 ,(a + />)(C+JX« + C)(b+(I)20x 20x 18x 221111分所以不能在

14、误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.12分19 . (1)证明:连接BD交CG iO,连接AQ.: ABCD是菱形,且G是初的中点,:.DOGsABOG H 2 分OB BC 2,.EM 1 工口 EM OD 乂由H知=一,于是= =-MB 2 MB OB 2: MONDE. 4 分又MOu平面MGC, DE。平面MGC,平面A/GC<2)作N£的中点P,连接GP,则GP/OE/OW,知0在平面GWC内.又由题知,Q£_LH3,于是PG_L4Q,:平面ADE 1平面力/?).平而/4Q/?n平而ARCDAD. PGr平而AD

15、E.:.尸GJ_平面力8C7).故aG_LGC PGLGD.在菱形 ABCD 中,Z/IDC=ZJ5C=60o,: GCLGD. 8分以G为坐标取点,GC, GD. GP分别为工,),二轴建立空间仃加坐标系,不妨设力。二2, ,: ZABC=6(T. AB=CD=2DE,:.AWC为正三角形,GC=&,干是 G(0,。 0卜。(石 0, 0),0(0,1- 0),/(0 T 0), . 咨(-31 0).io分京第=历,旦0处广故研(-6 2. 0)T,。),可得-6 2 0),由 GC1GD, PG±GD 知 GO_L平面 GA/C, :丽是平面GMC的,个法向量.12分故

16、宜线BG与平面GCE所成角的正弦值为sii*空驾=绰阿 7(注:此题可以立接证明8UL平面GVC进而N8CC是4G与平面GCZT所成用的 平面角,在RlZ8GCU求解.请对应给分)2 220.解:(1) V椭圆E: ± +=1(0</><2)的离心率为上,4 6,2=1,2解得代3,所以椭圆E的方程为工+工=1 43据题知h,时,力.线/的方程为y = k-l,即x2y-2 = 0.i2/f(xr vi> 仅必 >2),+ 1.联立,43 消去户整理得F+尸2=0,解得、尸-2X2=l.x - 2 v + 2 = 0.干是可得力(-2. 0),6(1,

17、2I12a:.408 的面积为S= 一 乂 | OA I xy = -x2x = 6 分2-22 2(2)设/(m 凹).6(m,")则 0GL4)' "°,1)但匕1联立43 一得(4K+3记+8h-8=0其判别式 A>0, 所 以 X|+X2= _ :k ,XX2= -,7分4公 +3 4A +3从而(1 + Z)OA , OB - 22OD Q=(1M)(xm+jmHu.V2)=(1+A)(1 +K* /2+曲|+工2巾->.A(.V| +sq)+2-(1+A)(1 4)口+人(工产口)+1-。-8(1+2)(1+A2) T 公,:4A2

18、+34二十3+ 1-/1-2(1+2X1+3 + 43) - 2(4 公+3)+ 64公+3+ 4公+3理科数学参考答案第4页(共6页)9分4-224k2+3所以当2=2时,合者"A3f即(1 + 2)5,为一 2/而万万=-7为定值 10分故存在常数1=2,使得(1 +幻万五一22瓦而为定值-7.12分21.解:<1)函数定义域为(1, +8), /'(工人二二一-不x-1 (x + 1)i4=一,市d) + ; + 4-, 1 分(x+irx-iV (x-l) + -2J(x-l).-=4,当且仅当.“亘,即-3时取“=”, x-1 V x-1xf9(x)-r(8-

19、<7) (n + 2/理科数学参考答案第6页(共6页)当时,八X)20在(1,+8)上恒成立,则此时/(*)在(L+8)上单调递增.3分当。>8时.r9.、X? 一 (u 2)x + Q + 1八力(一)(川)2 2 c v Z1 、八 A/jzM a _&ia - 2 + xla- 一令x +(2-u)x + (l +a) = O 伴.0=, x 2=4 a 2 Ja" &, . a -4 一。", 8az / , 一 、) / 八由1=, 而("-4)'一(,. 一84)=16>0 ,-2故一2一“1 2、八 7久 1

20、 a一m pa 2 + J(T 汝由 / (X)>0 可得 1 VR<或无>,即此时/(外在(I,"”7, -遇 2 + ?&, +8)上单调递增:由 r(.v)<0 可得"2一4一& <x< - 2 + 5-削, 22即此时/(外在("-2-'J&L, "2 +产%上单调递减;5分综上所述,当“W8时,/*>在(1, +8)上单调递增:当a>8吐/(用在(I, a-2 G8a),(-2 + 容8,十上单调 2递增,在(2-2 8 a 2 + /cr 8a理科数学参考答案第8

21、页(共6页)(2)因为/'(x) =ax2 +(2-a)x + +ax-l (x+1)2(x- l)(x+ 1)由胭知方程/'(工)=0在(1. +8)上仃两个不相等的实数根,即方程-。)%+ (1 +。)=0在。 +8)上仃两个不相等实数根g, X2, 二(2-4-4(1 + />0,2-a i>1,2-+(2-a)l + l+a0.解得心8.这Ujjq+工2 =。-2 xx2 =fl + l.于是/(玉)+ /(X2)= hl: + -74 1nrl + 72 x +12 x2 +1=In 区7)(.一1)+ .2+2 4xx2 +(Xj +x2)+1,a + 1-4 + 2 + 1/ a-2 + 2 、 a=ln+ a()=4a+l+a-2+12令y5,解得 = M),满足>8.所以存在实数4 = 10.使得/(石)+/(引=512分22.解:(11X线/的极坐标方程可变形为:pfcosaco

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论