四边形复习导学案_第1页
四边形复习导学案_第2页
四边形复习导学案_第3页
四边形复习导学案_第4页
四边形复习导学案_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学习必备欢迎下载【学习目标】【学习重点】【学习难点】平行四边形及特殊的平行四边形(复习导学案)掌握平行四边形与各种特殊平行四边形的性质、判定方法,形成解决问题的基本技能。 熟练运用特殊平行四边形的性质、判定方法解决问题。灵活运用特殊平行四边形的性质和判定进行证明和计算,形成解决问题的基本技能。360°【课前准备】一、以题代纲,梳理知识1根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点0:(1) AB = CD,AD= BC(2)/ A=/ B=/ C= 90°((一)性质与判定,列表归纳平行四边形矩形菱形正方形性 质边平行且相等平行且相

2、等平行,相等平行,相等角相等,邻角都是直角相等都是直角对角 线互相互相互相,且每条对角线平分一组互相且,每条对角线平分一组判定1、 两组对边分别;2、 两组对边分别;3、一组对边_且_;4、两组对角分别 ;5、两条对角线互相_.1、 有个角是直 角的四边形;2、 有角是直角的;3、相等的.1、四边的四边形;2、 对角线互相的平 行四边形;3、 有一组邻边的平 行四边形。4、 每条对角线一组 对角的四边形。1、 有一个角是的菱形;2、 对角线的菱形;3、 有一组邻边的矩形;4、 对角线互相的矩形;对称性是否是轴对称图形是否是轴对称图形面积S=S=S=S=(二)诊断练习(3)AB = BC四边形A

3、BCD是平行四边形)(5) AB = CD, / A=/ C(4)0A = 0C= 0B= OD , AC丄 BD (2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为 3、顺次连结矩形 ABCD各边中点所成的四边形是平方厘米.4、若正方形 ABCD的对角线长10厘米,那么它的面积是(三)基础练习:1、矩形、菱形、正方形都具有的性质是(A .对角线相等B.对角线平分一组对角2、正方形具有,矩形也具有的性质是(A .对角线相等且互相平分B.C.对角线互相垂直且互相平分D.3、矩形具有,而菱形不一定具有的性质是(A.对角线互相平分B. 对角线相等4、正方形具有而矩形不具有的特征是() C

4、.对角线互相平分) 对角线相等且互相垂直 对角线互相垂直平分且相等)C.对边平行且相等D.内角和为)D.对角线互相垂直学习必备欢迎下载A.内角和为360° B.四个角都是直角 C.两组对边分别相等D.二、典例精析,查漏补缺【例题1】已知如图: ABCD的对角线AC BD交于点O, EF过点O与对角线平分对角AB CD分别交于点 E、F.求证:OE=OFA D£OpFC变式1 .在例1中,若改为过 A作AHL BC,垂足为H,连结HO并延长交AD于 G连结GC则四边形 AHCG是什么四边形?请证明,久.车HC变式1变式2.在例1中,若作GHL BD GH分别交AD BC于G

5、H则四边形BGDH是什么四边形?为什么?变式3.在例1中,若将“ ABCD改为“矩形 ABCD, GH分别交AD BC于GH则四边形BGDH是什么四边形?若 AB=6,BC=8你能求出GH的长吗?H C变式3【例题2】已知:如图,在正方形 ABCD E是BC边上一点,F是CD的中点,且 AE = DC + CE .求证:AF 平分/ DAEoE C二、中考题选编1.如图1 , O是矩形ABCD的对角线 为AC的中点,M是AD的中点.若 AB=5, AD=12则四边形 ABOM的周长DC2如图,在边长为 6的菱形ABCD的最小值为.3. 如图2,菱形ABCD勺对角线的长分别为/ BC交AB于E,

6、 PF/ CD交AD于F,则阴影部分的面积是中,/ DAB = 60 ° E为AB的中点,F是AC上的一动点,贝U EF + BF2和5, P是对角线AC上任一点(点P不与点A C重合)且PE4. 如图,在 Rt ABC中,/ C=90,以 AC为一边向外作等边三角形 ACD(1)证明DE/ CB;(2)探索AC与AB满足怎样的数量关系时,四边形点E为AB的中点,连结DEDCBE是平行四边形.5.如图所示,已知E为口ABCD中 DC延长线上的一点,且 CE=DC连接AE分别交BC和BD于点F和点G,连接AC交BD于点O,连接OF试说明:AB=2OF."a6.E, CF丄AD

7、交AD的延长线于点 F,求证:BE=DF7.如图,在 ABCD中, AB=3cm BC=5cm, / B=60° ,G是CD的中点,E是边AD上的动点,EG的延长线与 BC的延长线交于点(1) 求证:四边形(2) 当 AE=_F,连接 CE,DFCEDF是平行四边形.cm时,四边形CEDF是矩形. cm时,四边形CEDF是菱形.当AE=8.如图,四边形 ABCD四边形BEFG匀为正方形,连接 AG,CE. 求证:(1)AG=CE.(2) AG1 CE.9.已知:如图,在矩形 ABCD中, M N分别是边AD BC的中点,(1) 求证: ABMA DCM(2) 判断四边形 MENFi什

8、么特殊四边形,并证明你的结论;(3) 当AD AB=时,四边形 MENF是正方形(只写结论,不需证明)E,F分别是线段BM CM的中点.AD= 8, DE平分/ ADC 贝U BE=变式1(例1)如图,在 ABCDK周长是.如图,在平行四边形E是AD边上的中点,若 NABE=NEBC, AB=2,则平行四边形 ABCD的ABC中,/ A=130°,在 AD上取 DE=DC 则/ E C B 的度数是变式22.如图所示,在矩形 ABCD中, AB=6, AD=8 P是AD上的动点,PEX AC, PF丄 BD于 F,贝U PE+PF的值为.D3.如图,在 ABCD中, E、F分别是对角

9、线 找出几种方法?D(变式一)AECF是平行四边形,你能变式一:(2)如图,在 ABCD中,E、/ EAF=/ ECF(变式二)F分别是对角线 BD上两点,且 AE/ CF,求证:(ABEA CDF变式二:如图,E,F是平行四边形 ABCD的对角线AC上的点,CE=AF请你猜想:BE?与 DF有怎样的位置 关系和数量关系?并对你的猜想加以证明.4.如图,把一张矩形的纸 ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F. 求证: ABF A EDF若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM试判断四边形 BMDF勺形状,并说明理由.DC5.如图所示, ABC中,点O是AC边上一个动点,过点 O作直线MN/ BC设MN交/ BCA的平分线于 E, 交/ BCA的外角平分线于点 F.(1) 求证:EC=FOAECF是矩形?并证明你的结论(2) 当点O运动到何处时,四边形MFX BD,垂足分别为E、FAC=12cm 求 ME+MF勺长。MFOE勺面积最大?6.已知正方形ABCD ME丄AC,(1) M是AB上的点,若对角线(2) 当M点运动到何处时,四边形7.如图, ABC中,AB=AC AD> ABC的角平分线,点 O为AB的中点,连接 DO并延长到点 E,使OE=OD 连接AE, BE(1) 求证:四边形 AEBD是矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论