


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十八课 锐角三角函数知识点锐角三角函数、锐角三角函数值的符号、锐角三角函数值的变化规律、特殊角三角函数值、互为余角的三角函数间的关系、同角三角函数间的关系(平方关系、商数关系、倒数关系)大纲要求1 理解正弦、余弦、正切、余切的概念,并能运用;2 掌握正弦和余弦表、正切和余切表的查法,掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;3 掌握互为余角和同角三角函数间关系,并能运用它们进行计算或化简。考查重点与常见题型1 求三角函数值,常以填空题或选择题形式出现,如:在RtABC中,C90°,3ab,则A ,sinA 2 考查互余或同角三角函数间关系,常以填空题或选择题
2、形式出现,如:(1) sin53°cos37°cos53°sin37° (2) 在RtABC中,C90°,下列各式中正确的是( )(A) sinAsinB (B)sinAcosB (C)tanAtanB (D)c0tAcotB3 求特殊角三角函数值的混合运算,常以中档解答题或填空题出现,如:12sin30°cos30° 预习练习1RtABC中,若sinA,AB10,那么BC ,tanB 2若tan·tan16°1,且为锐角,则 3写出适合条件的锐角cos,= ,tan24tan0,则 4 查表求cot68
3、°19时,先查得cot68°180.3979,又查得1的修正值是0.0003,则cot68°19 5 设、互为余角,则tan·tancot 6 直角三角形中,C90°,a,b分别是A,B的对边,则是角A的( ) (A)正弦 (B)余弦 (C)正切 (D)余切7 ABC中,C90°,则cosA·cotB的值是( )(A) (B) (C) (D) 考点训练1RtABC中,C90°,AB6,AC2,则sinA( )(A) (B) (C) (D)2在ABC中,C90°,sinA,则tanA·cosA的值
4、是( )(A) (B) (C) (D)3已知AB90°,则下列各式中正确的是( ) (A)sinAsinB (B)cosAcosB (C)tanAcogB (D)tanAtanB4若0°<a<45°,则下列各式中正确的是( ) (A)sina>cosa (B)cosa>sina (C)cota<1 (D)tana>cota5RtABC中,C90°,ACBC1,则cosA= ,cotA 6设a为锐角,若sina,则a ,若tana,则a 7查表得cot56°421.5224,2的修正值为0.0019,则cot5
5、6°44 8已知a为锐角,若cosa,则sina ,tan(90°a) 9. 已知sina=, a为锐角,则cosa ,tana ,cota 10用“>”或“<”连结: cos18° cos18°3; tan31° tan32°; tan29°30 cot60°29 sin39° cos51°;cot30° sin89°;sinacosa 1(a为锐角)11计算:(1)sin60° cos45°sin30°·cos30
6、76;(2)3 tan30°cos0°·cos45°12ABC中,BAC90°,AD是高,BD9,tanB,求AD、AC、BC13已知方程x25x·sina10的一个根为2,且a为锐角,求tana 的值。解题指导1 计算:(1)sin45°·cos45°3cot260°+(2)2 若a为锐角,tga3,求的值。3 在RtABC中,C90°,求证:a3cosAb3cosB=abc4 方程x2x m0的两根是一个直角三角形中两锐角的余弦cosA和cosB,求A、B的度数和m的值。5 若方程
7、2x22x·cosacosa(cosa4)0的两个根x1、x2满足(x11)(x21),求sina的值。6ABC中,ABAC,BAC36°,AD是BC边上的高,BE是ABC的平分线,BC1,试利用这个三角形求出sin18°的值。7已知sin和cos是方程a2x2a3x10的两根,求a的值。独立练习1在RtABC中,C90°,sinAsinB34,则ctgA的值( )(A) (B) (C) (D)2若2cosa0,则锐角a( )(A) 30°(B)15° (C)45°(D)60°3 已知a=sin25°,b
8、=tan46°,c=cot17°,m=cos20°,则a、b、c、m的大小关系( )(A) a<b<c<m(B)b<m<c<a(C)a<m<b<c(D)m<a<b<c4在RtABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值( )(A) 都扩大两倍(B)都缩小两倍(C)没有变化(D)不能确定50°<a<45°,下列不等式中正确的是( )(A)cosa<sina<cota(B)cosa<cota<sina(C)sina<cosa<cota(D)cota<sina<cosa6RtABC中,C90°,ba1,则cosB= ,cotA 7已知锐角a的终边经过点P(x,2),点P到坐标原点的距离r,则sina= ,cosa 8查表求cos43°26的值时,先查得cos43°240.7266,又查得2的 修正值为0.0004,那么cos43°26 95sin2(90°a)5sin2a 10计算:(1)(2)cos21°cos22°·
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铜仁市《轮机部(船舶辅机8301)》-海船船员考试备考题库含答案(2025年)
- 安顺市2024-2025学年七年级下学期语文月考测试试卷
- 阿拉善盟2024-2025学年八年级下学期语文期末测试试卷
- 安徽省滁州市琅琊区2023-2024学年高一上学期期中考试语文试题及答案
- 2025 年小升初宁波市初一新生分班考试英语试卷(带答案解析)-(外研版)
- 2025年高中元旦节为话题的作文
- 社区消防知识培训课件演讲
- 社区消防知识培训课件会简报
- 2024-2025学年辽宁省营口市盖州市北师大版四年级下册期末考试数学试卷(含答案)
- 画册印刷制作合同范本
- 警校区队管理制度规定
- 郑州银行总行信息科技岗位招聘考试真题2024
- 新发展英语(第二版)综合教程2 课件 Unit 6 Cultural Difference
- 脑卒中失语症的康复护理
- 消防联动调试方案
- 2025年安徽中医药高等专科学校单招职业技能测试题库审定版
- 自动化仪表施工方案
- 注射用重组人TNK组织型纤溶酶原激活剂-药品临床应用解读
- DBJ04T 289-2020 建筑工程施工安全资料管理标准
- 小儿泄泻(小儿腹泻病)中医临床路径
- 运输车辆司机安全培训考试专项测试题及答案
评论
0/150
提交评论