下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1几何证明-常用辅助线(一)中线倍长法:例1、求证:三角形一边上的中线小于其他两边和的一半。已知:如图,ABC中,AD是BC边上的中线,求证:AD1分析:要证明AD2AD即AD- (AB+AC)2小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。它可以将分居中线两旁的两条边AB AC和两个角/BAD和/CAD集中于同一个三 角形中,以利于问题的获解。课题练习:卫ABC中,AD是/BAC的平分线,且BD=CD求证AB=ACAB AD=DC BD平分/ABC求证:/BAD/BCD180.分析:因为平角等于180。,因而应考虑把两个不在一起的通过全等转 化成为平角,图中缺少全
2、等的三角形,因而解题的关键在于构造直角三角形, 可通过“截长补短法”来实现.证明:过点D作DE垂直BA的延长线于点E,作DF丄BC于点F,如图1-2 BD平分/ABC. DE=DF在RtAADE与RtACDF中,DE = DFlAD =CD RtADE RtACDF HD,DAE/DCF又/BAD/DA匡180,./BAD/DCI=180,即/BAD/BCD180例2.如图2-1,AD/ BC点E在线段AB上,/ADE/CDE/DCE/ECB求证:C=ADHBCCEC如图3-1, / 仁/2,P为BN上一点,且PDI BC于点D, AB-BC=2BDBAR/BCP180.如图4-1,在ABC中
3、,/0=2/B,/1= /2.求证:AB=AQCDC例3.已知,求证:/例4.已知:图3-1作业:1、已知:如图,ABCD是正方形,/FAD:/FAE求证:BBDFAE2、五边形ABCD中,AB=AE B(+DE=CD/ABC/AED180,求证:AD平分/CDE(三)其它几种常见的形式:1、有角平分线时,通常在角的两边截取相等的线段,构造全 等三角形。例:如图1:已知ABC的中线,且/1= /2,/3=/4,求证:BECFEFoFCE图12、有以线段中点为端点的线段时,常延长加倍此线段,构造全 等三角形。例:如图2:AD为ABC的中线,且/1= /2,/3=/4,求证:BE+ CFEF练习:已知ABC AD是BC边上的中线,分别以AB边、AC边为直角边各 向形外作等腰直角三角形,如图4,求证EF=2AD3、延长已知边构造三角形:例如:如图6:已知AOBD, ADIAC于A,BCIBD于B,求证:AD= BCM图2F图464、连接四边形的对角线,把四边形的问题转化成为三角形来解决。例如:如图7:AB/ CD AD/ BC求证:AB=CD5、有和角平分线垂直的线段时,通常把这条线段延长。例如:如图8:在RtABC中,AB= AC/BAC= 90,/1= /2,CELBD的延长于E。求证:BD- 2CE6连接已知点,构造全等三角形。例如:已知:如图9;AC BD相交于0点,且AB=D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第12章 RT-Thread开发应用实例
- 第七章胆囊和胆管超声诊断
- 高中生语文学习中的文化认同与文化自信培养研究教学研究课题报告
- 小学数学教育中轻量化AI教育资源交互对学生逻辑思维能力的影响研究教学研究课题报告
- 《建筑防水工程防水层施工过程中的质量检测与评估体系构建》教学研究课题报告
- 2025年移动支付平台五年发展与市场竞争报告
- 基于翻转课堂的初中英语教师数字能力提升策略研究教学研究课题报告
- 2026年国家纳米科学中心鄢勇课题组招聘备考题库及答案详解(易错题)
- 陕西中医药大学2026年专职辅导员招聘备考题库及完整答案详解一套
- 2026年山西财贸职业技术学院单招职业技能笔试备考试题及答案解析
- 律所分所管理协议书
- 中国特色社会主义知识点总结中职高考政治一轮复习
- 医院侵害未成年人案件强制报告制度培训课件
- 2025年宁夏银川德胜工业园区管理委员会招聘10人历年自考难、易点模拟试卷(共500题附带答案详解)
- 人工智能驱动提升国际传播可及性的机制、困境及路径
- 驾驶员心理健康培训课件
- DBJ50T-306-2018 建设工程档案编制验收标准
- 产业研究报告-中国二手奢侈品行业发展现状、市场规模、投资前景分析(智研咨询)
- 《低温技术及其应用》课件
- 室内装修工程高空作业方案
- 术前准备与术后护理指南
评论
0/150
提交评论